环F2+uF2的Galois扩张上的迹码
doi: 10.3724/SP.J.1146.2006.00637
Trace Codes over Galois Extensions of Ring F2+uF2
-
摘要: 环F2+uF2是介于环Z4与域F4之间的一种四元素环,因此分享了环Z4与域F4 的一些好的性质,此环上的编码理论研究成为一个新的热点。该文给出了环F2+uF2 的Galois扩张的相关理论,指出此Galois扩环的自同构群不同于Z4环上的Galois扩环的自同构群;定义了Galois扩环上的迹码的概念及子环子码的概念,证明了此Galois扩环上的一个码的对偶码的迹码是该环的子环子码的对偶码。Abstract: F2+uF2 is a ring with four elements which shares some good properties of both Z4 and F4 Coding theory over this ring has recently received a great deal of interest among coding theorists. This paper gives the theory of Galois extensions over F2+uF2,and shows that the automorphism groups of these Galois extensions are different from the corresponding groups over Z4.Trace codes and subring subcodes over Galois extensions are defined, and it is proved that the trace codes of dual codes of linear codes are the dual codes of subring subcodes.
-
[1] Dougherty S T, Gaborit P, and Harada M. Type II codes over F2+uF2[J].IEEE Trans. on Info.Theory.1999, 45(1):32-45 [2] Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2 + uF2[J].IEEE Trans. on Info. Theory.1999, 45(4):1250-1255 [3] Udaya P and Bonnecnze A. Decoding of cyclic codes over F2+uF2[J].IEEE Trans. on Info. Theory.1999, 45(6):2148-2157 [4] Dougherty S T, Gaborit P, Harada M, and Munemasa A, et al.. Type IV self-dual codes over rings[J].IEEE Trans. on Info. Theory.1999, 45(7):2345-2358 [5] Ling S and Sole P. Duadic codes over F2+uF2[J].Applicable Algebra in Engineering, Communication and Computing.2001, 12(5):365-379 [6] Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4[J].IEEE Trans. on Info. Theory.2001, 47(1):400-404 [7] 朱士信. 信息安全中有限环上的纠错码和序列密码研究.[博士论文], 合肥工业大学,2004. [8] MacWilliams F J and Sloane N J A. The Theory of Error Correcting Codes. Amsterdam, the Netherlands: North- Holland, 1977: 93-154. [9] Mcdonald B R. Finite rings with identity. New York: Marcel Dekker, 1974: 291-335. [10] Wan Zhe-xian. Quaternary Codes.Singapore: World Scientific, 1997: 93-112.
计量
- 文章访问数: 3362
- HTML全文浏览量: 122
- PDF下载量: 966
- 被引次数: 0