高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PHAF的多普勒参数估计

肖文书 张兴敢 王茹琪

肖文书, 张兴敢, 王茹琪. 基于PHAF的多普勒参数估计[J]. 电子与信息学报, 2007, 29(7): 1678-1682. doi: 10.3724/SP.J.1146.2005.01564
引用本文: 肖文书, 张兴敢, 王茹琪. 基于PHAF的多普勒参数估计[J]. 电子与信息学报, 2007, 29(7): 1678-1682. doi: 10.3724/SP.J.1146.2005.01564
Xiao Wen-shu, Zhang Xing-gan, Wang Ru-qi. Doppler Parameter Estimation Based on Product High-Order Ambiguity Function[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1678-1682. doi: 10.3724/SP.J.1146.2005.01564
Citation: Xiao Wen-shu, Zhang Xing-gan, Wang Ru-qi. Doppler Parameter Estimation Based on Product High-Order Ambiguity Function[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1678-1682. doi: 10.3724/SP.J.1146.2005.01564

基于PHAF的多普勒参数估计

doi: 10.3724/SP.J.1146.2005.01564

Doppler Parameter Estimation Based on Product High-Order Ambiguity Function

  • 摘要: 在通常情况下,多普勒参数是影响SAR成像质量的主要因素。目前,估计多普勒参数的算法主要有Mapdrift、相位梯度自聚焦以及对比度最优自聚焦等自聚焦算法,这些算法有一个共同的缺点,不能估计并补偿高阶多普勒参数。该文通过基于乘积型高阶模糊度函数(Product High-order Ambiguity Function, PHAF)算法来估计多普勒参数的新方法,该方法无需利用惯导数据预先计算多普勒调频斜率初值,可与杂波锁定并行完成,并且具有估计高阶多普勒参数的能力。仿真实验比较了PHAF和MapDrift分别在小信噪比,存在高阶误差时的自聚焦能力。结果说明该算法计算量小、鲁棒性强、估计精度高,在小信噪比情况下仍可得到较准确的估计结果。最后给出的成像结果说明该文提出的算法能够大大改善成像分辨率。
  • Curlander J C and McDonough R N. Synthetic Aperture Radar-Systems and Signal Processing. New York: John Wiley amp; Sons, 1991: 222-237.[2]姚萍, 陈冰冰, 王贞松. 采用方位向自适应滤波器提高SAR自聚焦的性能[J].电子与信息学报.2003, 25(8):1066-1072. Yao Ping, Chen Bing-bing, and Wang Zhen-song. To improve the performance of autofocus in SAR images with an azimuth adaptive filter. Journal of Electronics and Information Technology, 2003, 25(8): 1066-1072.[3]Porchia A, Barbarossa S, and Scaglione A. Autofocusing techniques for SAR imaging based on the multilag high order ambiguity function. Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., ICASSPrsquo;96 Atlanta(GA), May 1996: 2086-2090.[4]Barbarossa S, Scaglione A, and Giannakis G B. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J].IEEE Trans. on Signal Processing.1998, 46(3):691-708[5]Peleg S and Friendlander B. The discrete polynomial-phase, transform[J].IEEE Trans. on Signal Processing.1995, 43(8):1901-1914[6]Zhou Guotong, Giannakis G B, and Swami A. On polynomial phase signals with time-varying amplitudes[J].IEEE Trans. on Signal Processing.1996, 44(4):848-861[7]Peleg S and Porat B. Estimation and classification of polynomial-phase signals[J].IEEE Trans. on Information Theory.1991, 37(2):422-430[8]Peleg S and Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase[J].IEEE Trans. on Signal Processing.1991, 39(3):749-752
  • 加载中
计量
  • 文章访问数:  3364
  • HTML全文浏览量:  91
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-02
  • 修回日期:  2006-04-14
  • 刊出日期:  2007-07-19

目录

    /

    返回文章
    返回