双Haar小波变换系数的MAP估计及在图像去噪中的应用
doi: 10.3724/SP.J.1146.2005.01549
MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising
-
摘要: 小波变换作为一种新的工具,在信号去噪中得到了重要的应用。本文对双Haar小波变换系数,提出了MAP的估计方法,并对其在图像去噪中的应用进行了讨论。实验表明所提出的小波收缩算法与软门限方法相比较,用于图像去噪时可以给出更好的结果。
-
关键词:
- 小波变换;MAP估计;图像去噪
Abstract: As a new tool, the wavelet transform has been used successfully in signal denoising. In this paper, the MAP estimate of double Haar wavelet transform coefficients is developed. Also, its application to image denoising is discussed. Examples show that the proposed approach is better than the soft thresholding in image denoising. -
Mallat S and Zhong S. Characterization of signals for multiscal edges. IEEE Trans. on PAMI, 1992, 14(7): 710-732.[2]Donoho D. De-noising by soft thresholding[J].IEEE Trans. on IT.1995, 41(3):613-627[3]Donoho D and Johnstone I M. Adapting to unknowing smoothness via wavelet shrinkage J[J].Amer. Statist. Associ.1995, 90(2):1200-1224[4]Moulin P and Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J].IEEE Trans. on Information Theory.1999, 45(4):909-919[5]Hansen M and Yu B. Wavelet thresholding via MDL for natural images[J].IEEE Trans. on Information Theory.2000, 46(8):1778-1788[6]Xie J, Zhang D, and Xu W. Spatially adaptive wavelet denoising using the minimum description length principle[J].IEEE Trans. on Image Processing.2004, 13(2):179-187[7]Nowak R D. Wavelet-based Rician noise removal for Magnetic resonance imaging[J].IEEE Trans. on Image Processing.1999, 8(10):1408-1419[8]Nguyen T Q and Vaidyananthan P P. Structures for M-channel perfect-reconstruction FIR QMF banks which yield linear-phase analysis filters. IEEE Trans. on Acoust., Speech, Signal Processing, 1990, ASSP-38(3): 433-446.[9]Wang X. Nonlinear multiwavelet transform based soft shresholding In Conf. IEEE APCCAS2000, Tianjing, Dec. 2000: 775-778.[10]Sendur L and Selesnik I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 2002, 11(11): 2744-2756.[11]Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1999. 期刊类型引用(7)
1. 刘亚春,王祎鸣,杨俊钢. 基于频谱细化和二阶同步压缩变换的船载地波雷达目标检测方法. 海洋科学进展. 2024(01): 116-125 . 百度学术
2. 李发瑞,纪永刚,任继红,程啸宇,王心玲. 基于SET-CNN的紧凑型地波雷达弱目标检测方法. 海洋科学进展. 2023(04): 753-764 . 百度学术
3. 李会勇,薛长飘,陈卓,胡进峰,姚冯. 基于Hankel矩阵分解的天波超视距雷达机动目标检测算法. 电子与信息学报. 2018(03): 541-547 . 本站查看
4. 李庆忠,周祥振,黎明,牛炯. 基于时频分析的海杂波背景下舰船目标检测. 计算机应用研究. 2018(01): 52-55+61 . 百度学术
5. 张冰瑞,雷志勇,周海峰,周毅. 基于HHT的高频雷达机动目标参数估计. 系统工程与电子技术. 2018(03): 546-551 . 百度学术
6. 刘子威,苏洪涛,胡勤振. 天波超视距雷达中瞬态干扰定位方法研究. 电子与信息学报. 2016(10): 2482-2487 . 本站查看
7. 胡进峰,薛长飘,李会勇,谢菊兰. 基于最大似然法的天波超视距雷达相位解污染算法. 电子与信息学报. 2016(12): 3197-3204 . 本站查看
其他类型引用(4)
-
计量
- 文章访问数: 3446
- HTML全文浏览量: 98
- PDF下载量: 1112
- 被引次数: 11