双Haar小波变换系数的MAP估计及在图像去噪中的应用
doi: 10.3724/SP.J.1146.2005.01549
MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising
-
摘要: 小波变换作为一种新的工具,在信号去噪中得到了重要的应用。本文对双Haar小波变换系数,提出了MAP的估计方法,并对其在图像去噪中的应用进行了讨论。实验表明所提出的小波收缩算法与软门限方法相比较,用于图像去噪时可以给出更好的结果。
-
关键词:
- 小波变换;MAP估计;图像去噪
Abstract: As a new tool, the wavelet transform has been used successfully in signal denoising. In this paper, the MAP estimate of double Haar wavelet transform coefficients is developed. Also, its application to image denoising is discussed. Examples show that the proposed approach is better than the soft thresholding in image denoising. -
Mallat S and Zhong S. Characterization of signals for multiscal edges. IEEE Trans. on PAMI, 1992, 14(7): 710-732.[2]Donoho D. De-noising by soft thresholding[J].IEEE Trans. on IT.1995, 41(3):613-627[3]Donoho D and Johnstone I M. Adapting to unknowing smoothness via wavelet shrinkage J[J].Amer. Statist. Associ.1995, 90(2):1200-1224[4]Moulin P and Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J].IEEE Trans. on Information Theory.1999, 45(4):909-919[5]Hansen M and Yu B. Wavelet thresholding via MDL for natural images[J].IEEE Trans. on Information Theory.2000, 46(8):1778-1788[6]Xie J, Zhang D, and Xu W. Spatially adaptive wavelet denoising using the minimum description length principle[J].IEEE Trans. on Image Processing.2004, 13(2):179-187[7]Nowak R D. Wavelet-based Rician noise removal for Magnetic resonance imaging[J].IEEE Trans. on Image Processing.1999, 8(10):1408-1419[8]Nguyen T Q and Vaidyananthan P P. Structures for M-channel perfect-reconstruction FIR QMF banks which yield linear-phase analysis filters. IEEE Trans. on Acoust., Speech, Signal Processing, 1990, ASSP-38(3): 433-446.[9]Wang X. Nonlinear multiwavelet transform based soft shresholding In Conf. IEEE APCCAS2000, Tianjing, Dec. 2000: 775-778.[10]Sendur L and Selesnik I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 2002, 11(11): 2744-2756.[11]Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1999.
计量
- 文章访问数: 3427
- HTML全文浏览量: 93
- PDF下载量: 1112
- 被引次数: 0