高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双Haar小波变换系数的MAP估计及在图像去噪中的应用

刘英霞 王欣

刘英霞, 王欣. 双Haar小波变换系数的MAP估计及在图像去噪中的应用[J]. 电子与信息学报, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549
引用本文: 刘英霞, 王欣. 双Haar小波变换系数的MAP估计及在图像去噪中的应用[J]. 电子与信息学报, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549
Liu Ying-xia, Wang Xin. MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549
Citation: Liu Ying-xia, Wang Xin. MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549

双Haar小波变换系数的MAP估计及在图像去噪中的应用

doi: 10.3724/SP.J.1146.2005.01549
基金项目: 

国家自然科学基金(60172022)资助课题

MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising

  • 摘要: 小波变换作为一种新的工具,在信号去噪中得到了重要的应用。本文对双Haar小波变换系数,提出了MAP的估计方法,并对其在图像去噪中的应用进行了讨论。实验表明所提出的小波收缩算法与软门限方法相比较,用于图像去噪时可以给出更好的结果。
  • Mallat S and Zhong S. Characterization of signals for multiscal edges. IEEE Trans. on PAMI, 1992, 14(7): 710-732.[2]Donoho D. De-noising by soft thresholding[J].IEEE Trans. on IT.1995, 41(3):613-627[3]Donoho D and Johnstone I M. Adapting to unknowing smoothness via wavelet shrinkage J[J].Amer. Statist. Associ.1995, 90(2):1200-1224[4]Moulin P and Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J].IEEE Trans. on Information Theory.1999, 45(4):909-919[5]Hansen M and Yu B. Wavelet thresholding via MDL for natural images[J].IEEE Trans. on Information Theory.2000, 46(8):1778-1788[6]Xie J, Zhang D, and Xu W. Spatially adaptive wavelet denoising using the minimum description length principle[J].IEEE Trans. on Image Processing.2004, 13(2):179-187[7]Nowak R D. Wavelet-based Rician noise removal for Magnetic resonance imaging[J].IEEE Trans. on Image Processing.1999, 8(10):1408-1419[8]Nguyen T Q and Vaidyananthan P P. Structures for M-channel perfect-reconstruction FIR QMF banks which yield linear-phase analysis filters. IEEE Trans. on Acoust., Speech, Signal Processing, 1990, ASSP-38(3): 433-446.[9]Wang X. Nonlinear multiwavelet transform based soft shresholding In Conf. IEEE APCCAS2000, Tianjing, Dec. 2000: 775-778.[10]Sendur L and Selesnik I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 2002, 11(11): 2744-2756.[11]Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1999.
  • 加载中
计量
  • 文章访问数:  3427
  • HTML全文浏览量:  93
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-11-28
  • 修回日期:  2006-05-15
  • 刊出日期:  2007-05-19

目录

    /

    返回文章
    返回