高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类傅里叶变换的多分量信号分离重构

毕岗 曾宇

毕岗, 曾宇. 类傅里叶变换的多分量信号分离重构[J]. 电子与信息学报, 2007, 29(6): 1399-1402. doi: 10.3724/SP.J.1146.2005.01344
引用本文: 毕岗, 曾宇. 类傅里叶变换的多分量信号分离重构[J]. 电子与信息学报, 2007, 29(6): 1399-1402. doi: 10.3724/SP.J.1146.2005.01344
Bi Gang, Zeng Yu. Reconstruction of Multi-component Signals Based on the Analogous Fourier Transform[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1399-1402. doi: 10.3724/SP.J.1146.2005.01344
Citation: Bi Gang, Zeng Yu. Reconstruction of Multi-component Signals Based on the Analogous Fourier Transform[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1399-1402. doi: 10.3724/SP.J.1146.2005.01344

类傅里叶变换的多分量信号分离重构

doi: 10.3724/SP.J.1146.2005.01344

Reconstruction of Multi-component Signals Based on the Analogous Fourier Transform

  • 摘要: 针对多分量信号重构的问题,该文提出了一种新颖的类傅里叶变换方法,并对其基本性质进行了分析。采用该方法将频域上混叠但在时频二维频谱图上不重叠的多分量信号变换到类傅里叶变换域,使之在频谱上不产生混叠,从而达到信号分离重构的目的。与分数傅里叶域最优滤波的方法进行的对比分析说明,类傅里叶变换方法的适用范围更宽。文中对非线性的多分量调幅信号进行了仿真计算,得到了满意的结果。表明该方法在信号检测和分析方面具有应用价值。
  • 张贤达, 保铮. 非平稳信号分析与处理. 北京: 国防工业出版社, 1998: 153-178.[2]Cohen L, et al.. Time-Frequency Analysis: Theory and Applications. New Jersey: Prentice Hall, 1995: 77-111.[3]Ouml;zdemir A K and Arikan O, et al.. Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments[J].IEEE Trans. on Signal Processing.2001, 49(2):381-393[4]Wang Pu, Yang Jianyu, and Du Yuming, et al.. A fast algorithm for parameter estimation of multi-component LFM signal at low SNR[J].2005 International Conference on Communications, Circuits and Systems, Hong Kong.2005, 2:765-768[5]Nickel R M, Sang T H, and Williams W J, et al.. A new signal adaptive approach to positive time-frequency distributions with suppressed interference terms. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, Seattle, 1998, 3: 1777-1780.[6]zdemir A K and Arikan O, et al.. A high resolution time frequency representation with significantly reduced cross-terms. Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, 2000, 2: 11693-11696.[7]Khandan F and Ayatollahi A, et al.. Performance region of center affine filter for eliminating of interference terms of discrete Wigner distribution[J].Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, Rome.2003, 2:621-625[8]冉鑫, 马世伟, 曹家麟. 基于Radon-Wigner变换的多分量LFM信号的检测, 上海大学学报, 2001, 7(2): 119-122.[9]于凤芹, 曹家麟. 基于分数阶傅里叶变换的多分量Chirp信号的检测与参数估计, 电声技术, 2004, 1: 53-59.[10]冉启文, 谭立英. 分数傅里叶光学导论. 北京: 科学出版社, 2004: 257-281.
  • 加载中
计量
  • 文章访问数:  3027
  • HTML全文浏览量:  93
  • PDF下载量:  954
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-24
  • 修回日期:  2006-04-28
  • 刊出日期:  2007-06-19

目录

    /

    返回文章
    返回