高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种抵抗信号注入式攻击的智能超表面辅助密钥生成机制

杨立君 汪昊旻 诸天成 吴蒙

杨立君, 汪昊旻, 诸天成, 吴蒙. 一种抵抗信号注入式攻击的智能超表面辅助密钥生成机制[J]. 电子与信息学报. doi: 10.11999/JEIT251281
引用本文: 杨立君, 汪昊旻, 诸天成, 吴蒙. 一种抵抗信号注入式攻击的智能超表面辅助密钥生成机制[J]. 电子与信息学报. doi: 10.11999/JEIT251281
YANG Lijun, WANG Haoming, ZHU Tiancheng, WU Meng. Reconfigurable Intelligence Surface Assisted Key Generation Resistant to Signal Injection Attacks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251281
Citation: YANG Lijun, WANG Haoming, ZHU Tiancheng, WU Meng. Reconfigurable Intelligence Surface Assisted Key Generation Resistant to Signal Injection Attacks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251281

一种抵抗信号注入式攻击的智能超表面辅助密钥生成机制

doi: 10.11999/JEIT251281 cstr: 32379.14.JEIT251281
基金项目: 国家自然科学基金( No. 62372244, No. 62172235),中兴通讯产学研(2023ZTE08-02),江苏省重点研发计划重点项目(BE2023025),江苏省研究生科研与实践创新计划项目(SJCX24_0299),南京邮电大学校级自然科学基金(NY225164)
详细信息
    作者简介:

    杨立君:女,副教授,研究方向为无线通信安全、信息安全

    汪昊旻:男,硕士研究生,研究方向为物理层密钥生成

    诸天成:男,硕士研究生,研究方向为物理层密钥生成

    吴蒙:男,教授,研究方向为无线通信、信息安全

    通讯作者:

    杨立君 yanglijun@njupt.edu.cn

  • 中图分类号: TN92

Reconfigurable Intelligence Surface Assisted Key Generation Resistant to Signal Injection Attacks

Funds: This paper was supported by the National Natural Science Foundation of China(62372244, 62172235), ZTE Industry-university-Research Fund(2023ZTE08-02), Primary Research & Developement Plan of Jiangsu Province (BE2023025), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_0299), Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY225164).
  • 摘要: 针对智能超表面(Reconfigurable Intelligent Surfaces, RIS)辅助下的密钥生成技术,从攻击与防御双视角开展研究。首先,基于攻击方视角提出了一种改进的联合密钥推测攻击策略,主动窃听者可结合注入信号和信道空间相关性进行联合密钥推测,显著加剧密钥生成过程的安全威胁;其次,从防御方视角提出了一种利用RIS随机化信道的抗注入式攻击密钥生成方案,合法用户通过调控RIS,在每个探测回合中主动随机化信道状态信息,迫使窃听者无法有效实施信号注入式攻击,从而降低密钥泄露风险并抑制密钥推测概率;进一步地;推导了该方案合法信道密钥容量和窃听信道密钥容量的理论表达式,定量分析了信噪比和窃听信道功率占比对合法信道密钥容量和窃听信道密钥容量的影响。仿真结果表明,相比现有方案,所提方案在克服准静态场景信道变化缓慢的基础上,提升了密钥生成系统的安全性。即使窃听者增大注入信号功率,窃听信道的密钥容量也呈现基本不变的趋势,有效抵御了信号注入式攻击的威胁。
  • 图  1  系统模型(假设Alice为发射端,Bob为接收端)

    图  2  信号注入式攻击下信道响应($ \rho =0.8 $)

    图  3  改进攻击策略下的信道响应($ \rho =0.8 $)

    图  4  密钥容量随注入信号功率变化曲线

    图  5  密钥容量随信道相关系数$ \rho $变化曲线

    表  1  信号注入式攻击时隙分配对比

    攻击方案相干时间Eve操作是否进行密钥推测推测依据
    信号注入式攻击时隙$ t $观测窃听信道
    时隙$ t+1 $进行信号注入注入信号
    本文方案时隙$ t $观测窃听信道窃听信道
    时隙$ t+1 $进行信号注入窃听信道+注入信号
    下载: 导出CSV

    表  2  不同条件下的密钥恢复率

    随机密钥推测经典密钥推测改进联合推测RIS抵御联合推测
    $ \rho =0 $;$ {P}_{\text{E}}=0 $(%)0.49990.49950.50270.4996
    $ \rho =0 $;$ {P}_{\text{E}}=1 $ (%)0.50100.62500.62560.5009
    $ \rho =0.4 $;$ {P}_{\text{E}}=5 $(%)0.49860.68160.74620.5746
    $ \rho =0.8 $;$ {P}_{\text{E}}=10 $(%)0.49960.71520.84850.6573
    下载: 导出CSV
  • [1] 杨立君, 陈子硕, 陆海涛, 等. RIS辅助通信场景中一种基于展开信道的物理层密钥生成方法[J]. 电子与信息学报, 2025, 47(2): 449–457. doi: 10.11999/JEIT240988.

    YANG Lijun, CHEN Zishuo, LU Haitao, et al. An unfolded channel-based physical layer key generation method for reconfigurable intelligent surface-assisted communication systems[J]. Journal of Electronics & Information Technology, 2025, 47(2): 449–457. doi: 10.11999/JEIT240988.
    [2] 杨立君, 孔文杰, 陆海涛, 等. 原子空间稀疏分解驱动的RIS辅助毫米波MIMO系统密钥生成机制[J]. 电子与信息学报, 2025, 47(4): 1066–1075. doi: 10.11999/JEIT240885.

    YANG Lijun, KONG Wenjie, LU Haitao, et al. A key generation method based on atomic norm minimization for reconfigurable intelligent surface-assisted millimeter wave MIMO communication systems[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1066–1075. doi: 10.11999/JEIT240885.
    [3] KAPETANOVIC D, ZHENG Gan, and RUSEK F. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks[J]. IEEE Communications Magazine, 2015, 53(6): 21–27. doi: 10.1109/MCOM.2015.7120012.
    [4] JAKES W C and COX D C. Microwave Mobile Communications[M]. New York: Wiley-IEEE Press, 1994: 60–65. (查阅网上资料, 出版地信息不确定, 请确认).
    [5] LI Guyue, STAAT P, LI Haoyu, et al. RIS-jamming: Breaking key consistency in channel reciprocity-based key generation[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 5090–5105. doi: 10.1109/TIFS.2024.3389569.
    [6] LI Guyue, HU Lei, STAAT P, et al. Reconfigurable intelligent surface for physical layer key generation: Constructive or destructive?[J]. IEEE Wireless Communications, 2022, 29(4): 146–153. doi: 10.1109/MWC.007.2100545.
    [7] WEI Zhuangkun, HU Wenxiu, ZHANG Junqing, et al. Explainable adversarial learning framework on physical layer key generation combating malicious reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3529–3545. doi: 10.1109/TWC.2025.3531799.
    [8] PHAM T M, MITEV M, CHORTI A, et al. Pilot randomization to protect MIMO secret key generation systems against injection attacks[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1234–1238. doi: 10.1109/LWC.2023.3268714.
    [9] XIA Enjun, HU Binjie, and SHEN Qiaoqiao. Secret key generation with intelligent reflecting surface under the pilot contamination attack[J]. IEEE Wireless Communications Letters, 2024, 13(1): 213–217. doi: 10.1109/LWC.2023.3325361.
    [10] TAN Haijun, LI Zhuoyuan, XIE Ning, et al. Detection of jamming attacks for the physical-layer authentication[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9579–9594. doi: 10.1109/TWC.2023.3272337.
    [11] EBERZ S, STROHMEIER M, WILHELM M, et al. A practical man-in-the-middle attack on signal-based key generation protocols[C]. 17th European Symposium on Research in Computer Security, Pisa, Italy, 2012: 235–252. doi: 10.1007/978-3-642-33167-1_14.
    [12] JIN Rong and ZENG Kai. Physical layer key agreement under signal injection attacks[C]. 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 2015: 254–262. doi: 10.1109/CNS.2015.7346835.
    [13] MITEV M, CHORTI A, BELMEGA E V, et al. Man-in-the-middle and denial of service attacks in wireless secret key generation[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013816.
    [14] MITEV M, CHORTI A, BELMEGA E V, et al. Protecting physical layer secret key generation from active attacks[J]. Entropy, 2021, 23(8): 960. doi: 10.3390/e23080960.
    [15] PAN Yanjun, XU Ziqi, LI Ming, et al. Man-in-the-middle attack resistant secret key generation via channel randomization[C]. The 22nd International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Shanghai, China, 2021: 231–240. doi: 10.1145/3466772.3467052.
    [16] 唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
    [17] YANG Lijun, ZHU Tiancheng, CHEN Zishuo, et al. Secret key generation assisted by reconfigurable intelligent surfaces for quasi-static channel[C]. 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023: 1856–1861. doi: 10.1109/GCWkshps58843.2023.10464734.
    [18] 马向进, 韩家奇, 乐舒瑶, 等. 可重构智能超表面设计及其无线通信系统应用[J]. 无线电通信技术, 2022, 48(2): 258–268. doi: 10.3969/j.issn.1003-3114.2022.02.008.

    MA Xiangjin, HAN Jiaqi, YUE Shuyao, et al. Reconfigurable intelligent metasurface design and applications in wireless communication systems[J]. Radio Communications Technology, 2022, 48(2): 258–268. doi: 10.3969/j.issn.1003-3114.2022.02.008.
    [19] LI Guyue, SUN Chen, XU Wei, et al. On maximizing the sum secret key rate for reconfigurable intelligent surface-assisted multiuser systems[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 211–225. doi: 10.1109/TIFS.2021.3138612.
    [20] MATHUR S, TRAPPE W, MANDAYAM N, et al. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel[C]. Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 128–139. doi: 10.1145/1409944.1409960.
    [21] THAI B N, TIEN T N, MINH K D, et al. Reconfigurable intelligent surfaces: A hardware-centric review of structures, implementation, evaluation, and integration with UAV and machine learning[J]. IEEE Access, 2025, 13: 96564–96588. doi: 10.1109/ACCESS.2025.3575583.
    [22] MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484.
    [23] ROTTENBERG F, NGUYEN T H, DRICOT J M, et al. CSI-based versus RSS-based secret-key generation under correlated eavesdropping[J]. IEEE Transactions on Communications, 2021, 69(3): 1868–1881. doi: 10.1109/TCOMM.2020.3040434.
    [24] SZABÓ Z. Information theoretical estimators toolbox[J]. The Journal of Machine Learning Research, 2014, 15(1): 283–287.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2026-02-05
  • 录用日期:  2026-02-05
  • 网络出版日期:  2030-08-24

目录

    /

    返回文章
    返回