高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机集群全域时间同步的时隙聚合与拓扑聚合模型研究

王振岭 陶海红 魏海涛 王正勇

王振岭, 陶海红, 魏海涛, 王正勇. 无人机集群全域时间同步的时隙聚合与拓扑聚合模型研究[J]. 电子与信息学报. doi: 10.11999/JEIT251274
引用本文: 王振岭, 陶海红, 魏海涛, 王正勇. 无人机集群全域时间同步的时隙聚合与拓扑聚合模型研究[J]. 电子与信息学报. doi: 10.11999/JEIT251274
WANG Zhenling, TAO Haihong, WEI Haitao, WANG Zhengyong. Research on Time Slots Aggregation and Topology Aggregation Model for Unmanned Aerial Vehicle Swarm Overall Time Synchronization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251274
Citation: WANG Zhenling, TAO Haihong, WEI Haitao, WANG Zhengyong. Research on Time Slots Aggregation and Topology Aggregation Model for Unmanned Aerial Vehicle Swarm Overall Time Synchronization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251274

无人机集群全域时间同步的时隙聚合与拓扑聚合模型研究

doi: 10.11999/JEIT251274 cstr: 32379.14.JEIT251274
详细信息
    作者简介:

    王振岭:男,研究员,研究方向为卫星导航、时间同步与应用技术

    陶海红:女,教授,研究方向为雷达信号处理,分布式雷达系统

    魏海涛:男,研究院,研究方向为时空基准服务、高精度时间同步技术

    王正勇:男,高工,研究方向为时间同步技术,时频传递与比对技术

    通讯作者:

    王振岭 wangzlcti@163.com

  • 中图分类号: TN967.2; TN914.52

Research on Time Slots Aggregation and Topology Aggregation Model for Unmanned Aerial Vehicle Swarm Overall Time Synchronization

  • 摘要: 无人机(UAV)集群能够实现单平台无法完成的复杂任务,各节点之间的精密时间同步是无人机集群完成资源调度、协同定位以及数据融合的重要基础。随着UAV集群规模越来越大,UAV集群编队飞行中节点之间的时间比对链路连通性具有明显的时变特性,对连续、可靠的高精度时间同步实现提出了挑战。面向UAV集群全部节点的领导跟随一致性时间同步(LFCTS),本文提出了观测时隙聚合(OTSA)模型和时变拓扑聚合(TVTA)模型,并进行了误差建模与仿真分析。OTSA模型通过系统时间同步周期内多个时隙同步样本的有效利用,可有效提升全局时间同步的鲁棒性和时间同步精度,实现的同步精度优于2.56ns,性能优于传统的分时比对同步体制。TVTA模型通过跨周期时间同步链路状态聚合和中继节点多跳时间同步措施,能够实现集群起飞集合、队形变换过程中的连续时间同步,典型的大规模集群全局同步的预测精度可优于8.60ns,并基于小规模UAV集群飞行试验验正了模型的鲁棒性。所提出的方法能够为无人机集群的复杂协同应用提供必要保障。
  • 图  1  QRBTC模式的无人机集群时间同步过程

    图  2  “一发多收”的时间同步观测过程

    图  3  不同比对周期的时变拓扑示意图

    图  4  时变拓扑聚合示意图

    图  5  传统时分比对方案下的全局TSA分布

    图  6  基于时隙聚合模型的典型时隙TSA

    图  7  基于TVTA模型的典型多跳LFCTS精度

    图  8  TVTA模型飞行试验UAV1钟差观测结果

  • [1] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. doi: 10.7527/S1000-6893.2019.23732.

    WANG Xiangke, LIU Zhihong, CONG Yirui, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732. doi: 10.7527/S1000-6893.2019.23732.
    [2] 尹建凤, 张庆君, 刘杰, 等. 国外编队飞行干涉SAR卫星系统发展综述[J]. 航天器工程, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016.

    YIN Jianfeng, ZHANG Qingjun, LIU Jie, et al. A review on development of formation flying interferometric SAR satellite system[J]. Spacecraft Engineering, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016.
    [3] 李沛洲, 杨勇, 李术, 等. 时频同步误差影响双基地SAR成像效果的仿真系统设计[J]. 电讯技术, 2024, 64(11): 1826–1835. doi: 10.20079/j.issn.1001-893x.230830002.

    LI Peizhou, YANG Yong, LI Shu, et al. Design of a simulation system for evaluating the influence of time-frequency synchronization error on the imaging effect of Bistatic SAR[J]. Telecommunication Engineering, 2024, 64(11): 1826–1835. doi: 10.20079/j.issn.1001-893x.230830002.
    [4] DOU Jie, XU Bing, and DOU Lei. Impact assessment of the asynchronous clocks between reference and user receivers in differential pseudolite navigation system[J]. IEEE Sensors Journal, 2021, 21(1): 403–411. doi: 10.1109/JSEN.2020.3014103.
    [5] 高宏, 邓志鑫, 王立兵, 等. 空基导航区域增强系统覆盖范围分析[J]. 无线电工程, 2017, 47(2): 45–47, 56. doi: 10.3969/j.issn.1003-3106.2017.02.11.

    GAO Hong, DENG Zhixin, WANG Libing, et al. Coverage analysis of air-based regional augmentation system for BD satellite navigation signal[J]. Radio Engineering, 2017, 47(2): 45–47, 56. doi: 10.3969/j.issn.1003-3106.2017.02.11.
    [6] 汤新民, 周杨, 鲁其兴, 等. 基于信号到达时间建模的广域多点定位时间同步方法[J]. 电子与信息学报, 2025, 47(5): 1434–1449. doi: 10.11999/JEIT240670.

    TANG Xinmin, ZHOU Yang, LU Qixing, et al. Wide-area multilateration time synchronization method based on signal arrival time modeling[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1434–1449. doi: 10.11999/JEIT240670.
    [7] 陈聪, 段柏宇, 徐强, 等. 无人机平台运动状态下节点间高精度时间同步[J]. 西安电子科技大学学报, 2024, 51(3): 19–29. doi: 10.19665/j.issn1001-2400.20231207.

    CHEN Cong, DUAN Baiyu, XU Qiang, et al. High precision time synchronization between nodes under motion scenario of UAV platforms[J]. Journal of Xidian University, 2024, 51(3): 19–29. doi: 10.19665/j.issn1001-2400.20231207.
    [8] WANG Zhenling, TAO Haihong, HAO Fang, et al. Eliminate dynamic error of A-PNAS high-precision time synchronization using multi-sensor combination[J]. Sensors, 2025, 25(19): 6028. doi: 10.3390/s25196028.
    [9] 张然, 刘春玲, 程珺炜, 等. 一种适用无人机集群的多段补偿时间同步算法[J]. 计算机仿真, 2021, 38(7): 327–330,474. doi: 10.3969/j.issn.1006-9348.2021.07.070.

    ZHANG Ran, LIU Chunling, CHENG Junwei, et al. A multi-stage compensation bidirectional time synchronization algorithm for UAV cluster[J]. Computer Simulation, 2021, 38(7): 327–330,474. doi: 10.3969/j.issn.1006-9348.2021.07.070.
    [10] LI Yong, SONG Chaoming, JIN Depeng, et al. A dynamic graph optimization framework for multihop device-to-device communication underlaying cellular networks[J]. IEEE Wireless Communications, 2014, 21(5): 52–61. doi: 10.1109/MWC.2014.6940433.
    [11] LIU Runzi, SHENG Min, LUI K S, et al. Capacity analysis of two-layered LEO/MEO satellite networks[C]. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015: 1–5. doi: 10.1109/VTCSpring.2015.7145726.
    [12] WANG Haocheng, LIN Bin, HAN Xiaoling, et al. A maximum flow algorithm based on undirected storage time aggregated graph for unmanned surface vessel networks[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 840–844. doi: 10.1109/icccworkshops62562.2024.10693689.
    [13] WANG Gaifang, LI Bo, YANG Hongjuan, et al. An energy-efficient routing algorithm for UAV formation based on time-aggregated graph[J]. China Communications, 2024, 21(11): 28–39. doi: 10.23919/JCC.fa.2024-0214.202411.
    [14] 蔚保国, 鲍亚川, 魏海涛. 面向时间同步业务的空间信息网络拓扑聚合图模型[J]. 电子与信息学报, 2017, 39(12): 2929–2936. doi: 10.11999/JEIT170252.

    YU Baoguo, BAO Yachuan, and WEI Haitao. Time synchronization service oriented topology aggregation model of space information network[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2929–2936. doi: 10.11999/JEIT170252.
    [15] GUO Mingming, WANG Feng, PENG Fei, et al. Design of distributed network clock-synchronization for swarm UAV[C]. 2020 International Conference on Computing and Data Science (CDS), Stanford, USA, 2020: 194–197. doi: 10.1109/CDS49703.2020.00046.
    [16] 瞿智, 王刚, 王天云, 等. 基于领导跟随一致性的卫星网络时频同步方法[J]. 宇航学报, 2025, 46(3): 589–600. doi: 10.3873/j.issn.1000-1328.2025.03.016.

    QU Zhi, WANG Gang, WANG Tianyun, et al. A time-frequency synchronization method for satellite networks based on leader-following consensus[J]. Journal of Astronautics, 2025, 46(3): 589–600. doi: 10.3873/j.issn.1000-1328.2025.03.016.
    [17] 赵建霞, 段海滨, 赵彦杰, 等. 基于鸽群层级交互的有人/无人机集群一致性控制[J]. 上海交通大学学报, 2020, 54(9): 973–980. doi: 10.16183/j.cnki.jsjtu.2020.146.

    ZHAO Jianxia, DUAN Haibin, ZHAO Yanjie, et al. Consensus control of manned-unmanned aerial vehicle swarm based on hierarchy interaction of pigeons[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 973–980. doi: 10.16183/j.cnki.jsjtu.2020.146.
  • 加载中
图(8)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-01
  • 修回日期:  2026-01-27
  • 录用日期:  2026-01-27
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回