高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空经济赋能者:智能无人机技术体系综述与展望

钱志鸿 王义君

钱志鸿, 王义君. 低空经济赋能者:智能无人机技术体系综述与展望[J]. 电子与信息学报. doi: 10.11999/JEIT251246
引用本文: 钱志鸿, 王义君. 低空经济赋能者:智能无人机技术体系综述与展望[J]. 电子与信息学报. doi: 10.11999/JEIT251246
QIAN Zhihong, WANG Yijun. Intelligent UAVs for Advanced Air Mobility: A Review of the Technology Framework and Future Prospects[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251246
Citation: QIAN Zhihong, WANG Yijun. Intelligent UAVs for Advanced Air Mobility: A Review of the Technology Framework and Future Prospects[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251246

低空经济赋能者:智能无人机技术体系综述与展望

doi: 10.11999/JEIT251246 cstr: 32379.14.JEIT251246
基金项目: 国家自然科学基金 (61771219),吉林省自然科学基金(20250102227JC)
详细信息
    作者简介:

    钱志鸿:男,教授,研究方向为基于5G通信技术的物联网、D2D、异构网的密集接入及组网技术研究

    王义君:男,教授,研究方向为通感一体无线网络通信及面向极端环境与特殊场景通信

    通讯作者:

    王义君 wyjs-107@163.com

  • 中图分类号: TN915.5

Intelligent UAVs for Advanced Air Mobility: A Review of the Technology Framework and Future Prospects

Funds: The National Natural Science Foundation of China (61771219), Jilin Provincial Natural Science Foundation (20250102227JC).
  • 摘要: 随着新质生产力与数字经济的深度发展,低空经济作为融合通用航空、无人机物流、空中出行等形态的新型产业体系,正成为全球经济增长的新引擎。无人机凭借其高性价比、可扩展性与高度智能化,在其中扮演着核心赋能者角色。本文系统性梳理并构建了面向低空经济的智能无人机技术体系,该体系遵循从底层基础到顶层应用的逻辑,通过通信网络贯通“感知-决策-行动”闭环,总结了无人机在物流运输、城市空中交通、公共安全、工业巡检等典型场景中的应用模式。剖析了其在感知与定位、通信与组网、智能决策与控制及空域集成与安全四大领域的关键技术内涵;归纳低空无人机通信三大关键网络类型,即无人机与蜂窝网络深度融合网络、无人机自组织专用网络、无人机计算应用网络,并详细分析了IRS辅助的NOMA通信、自组网拓扑优化和移动边缘计算分别在三类网络中的核心作用。解析了无人机在可靠通信、智能感知、自主协同、能源动力等方面面临的技术挑战以及在空域管理、法规标准、商业模式与社会接受度方面的非技术挑战。展望智能全域通信、认知群体智能、高置信度自主安全及绿色可持续技术等未来融合发展趋势的同时,提出基于“挑战驱动-技术融合-体系构建-反馈迭代”的低空经济无人系统技术闭环演进范式,揭示了其发展内在逻辑是以应用为导向、具备自我优化能力的动态递归过程。
  • 图  1  智能无人机技术体系框架

    图  2  低空无人机与蜂窝网融合通信架构

    图  3  低空无人机自组网协同通信架构

    图  4  低空无人机计算应用网络通信架构

    图  5  IRS辅助的多无人机NOMA通信系统模型

    图  6  无人机辅助MEC计算任务卸载系统模型

    图  7  时隙分配图

    图  8  控制方法分类

    图  9  空中交通管理架构

    图  10  低空经济无人系统技术发展的闭环演进框架

    表  1  低空经济中无人机的典型应用场景与技术总结

    应用场景 描述 关键技术 商业模式 面临挑战 代表案例/试点
    低空物流与运输 快递配送、医疗急救物资运输、跨海湾/山区运输等,强调高效、低成本的货物移动 自主导航与路径规划、电池与
    动力管理、感知与避障、货物
    装载/卸载系统、通信链路
    B2B(如物流公司合作)、B2C(直接配送服务) 空域管理、电池续航、天气适应性、法规合规 美团无人机配送(深圳)、Zipline(卢旺达/美国) 医疗物资空投项目
    城市空中
    交通
    聚焦eVTOL与载人级无人机的运营,实现城市内短途客运
    或货运
    垂直起降、轻量化材料、
    电动推进系统、安全与认证
    标准、空中交通管理
    共享出行服务、城市交通网络
    集成
    安全性认证、
    噪音控制、
    基础设施建设
    亿航EH216-S、Joby Aviation(美国) 城市
    空中交通测试项目
    公共安全与应急响应 应用于消防救援、警务巡逻、
    灾害勘测与救援,提升响应
    速度与情景感知能力
    实时视频传输、热成像与多光谱传感器、多机协同控制、快速部署机制、数据融合分析 政府采购、公共服务合作 应急通信可靠性、恶劣环境
    适应性、数据
    隐私与安全
    深圳“医疗急救走廊”
    无人机送血项目、澳大利亚西太平洋海域“无人机
    救援”项目
    工业巡检与农林牧渔 涵盖电力/油气管道巡检、
    大型基础设施监测、精准农业,
    优化资源利用与维护效率
    多光谱/LiDAR传感、自动巡检算法、数据分析与AI、长效
    续航技术、高精度定位
    订阅服务(如应
    用监测)、项目
    合同(工业巡检)
    数据准确性、操作自动化程度、成本效益平衡 浙江电网无人机智能巡检项目、极飞科技农业植保
    无人机
    下载: 导出CSV

    表  2  无人机集群协同任务分配算法对比描述

    典型算法算法类别算法描述算法特征
    穷举遍历
    分支定界
    集中式优化类构建最优化数学模型进行求解问题表述程度有限、计算处理过程复杂、中心化依赖严重
    粒子群算法
    遗传算法
    集中式启发类不断调节解质量,进行启发式优化解算结果随机化程度过高、缺乏严格数学理论支撑、
    中心化依赖严重、算法实现容易
    市场拍卖分布式模拟类将复杂任务映射至某场景,借助其运行方式解决问题扩展性强、实现灵活、信息同步程度要求高
    人工智能分布式/集中式
    马尔可夫决策
    将分配转移为动态决策解决问题动态决策能力强、环境适应程度高、求解过程时间跨度长
    群智能算法分布式生物类基于局部动态感知与变化,形成组织行为解决问题解算结果随机化程度过高、缺乏严格数学理论支撑、
    规模变化不敏感、算法实现容易
    下载: 导出CSV
  • [1] WANG Yixian, SUN Geng, SUN Zemin, et al. Toward realization of low-altitude economy networks: Core architecture, integrated technologies, and future directions[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(5): 2788–2820. doi: 10.1109/TCCN.2025.3601015.
    [2] 国务院, 中央军委. 低空空域管理改革方案[Z]. 北京: 2010. (查阅网上资料, 未找到本条文献信息, 请确认).

    State Council and Central Military Commission of the People’s Republic of China. Low altitude airspace management reform plan[Z]. Beijing, China, 2010.
    [3] 中国信息通信研究院. 低空经济白皮书(2024年)[R]. 北京: 中国信息通信研究院, 2024. (查阅网上资料, 未找到本条文献信息, 请确认).

    China Academy of Information and Communications Technology (CAICT). White paper on low-altitude economy (2024)[R]. Beijing, China: China Academy of Information and Communications Technology, 2024.
    [4] World Economic Forum. Advanced air mobility: Shaping the future of aviation[R]. Davos: World Economic Forum, 2024. (查阅网上资料, 未找到本条文献出版地, 请确认).
    [5] National Aeronautics and Space Administration. UTM: Air traffic management for low-altitude drones[R]. Washington, DC: National Aeronautics and Space Administration, 2018.
    [6] NASA. Unmanned aircraft system traffic management concepts of operations V2.0[R]. Washington DC, 2020. (查阅网上资料, 未找到本条文献信息, 请确认).
    [7] Japan Aerospace Exploration Agency. Roadmap for the application and technology development of UAVs[R]. Toyota, Japan, 2017. (查阅网上资料, 未找到本条文献信息, 请确认).
    [8] 王俊潼, 包丹文, 周佳怡, 等. 低空空域规划研究现状与展望[J]. 航空学报, 2025, 46(11): 530879. doi: 10.7527/S1000-6893.2024.30879.

    WANG Juntong, BAO Danwen, ZHOU Jiayi, et al. Low-altitude airspace planning: A review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 530879. doi: 10.7527/S1000-6893.2024.30879.
    [9] 张平, 陈岩, 吴超楠. 6G: 新一代移动通信技术发展态势及展望[J]. 中国工程科学, 2023, 25(6): 1–8. doi: 10.15302/J-SSCAE-2023.06.001.

    ZHANG Ping, CHEN Yan, and WU Chaonan. Six-generation mobile communication: Development trend and outlook[J]. Strategic Study of CAE, 2023, 25(6): 1–8. doi: 10.15302/J-SSCAE-2023.06.001.
    [10] WANG Linan and WEN Guanghui. Attitude estimation for rigid aircraft: A distributed finite-time complementary filter with multiple inertial measurement units[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 3004010. doi: 10.1109/TIM.2025.3612644.
    [11] 谷美颖, 李航, 张家伟, 等. 基于视觉的无人机定位与导航方法研究综述[J]. 电子学报, 2025, 53(3): 651–685. doi: 10.12263/DZXB.20240699.

    GU Meiying, LI Hang, ZHANG Jiawei, et al. A review of vision-based UAV localization and navigation methods[J]. Acta Electronica Sinica, 2025, 53(3): 651–685. doi: 10.12263/DZXB.20240699.
    [12] LI Yiyuan, CHEN Weiyi, FU Bing, et al. A distributed cooperative dynamic target search method for multi-UAV systems in complex adversarial environments[J]. IEEE Internet of Things Journal, 2025, 12(18): 38155–38171. doi: 10.1109/JIOT.2025.3585158.
    [13] CHENG Yuanxun, HU Qingsong, GAO Wenjie, et al. Environment-aware IoT UAV channel prediction: A multiparameter prediction case using multimodal sensing data[J]. IEEE Internet of Things Journal, 2025, 24(12): 53410–53426. doi: 10.1109/JIOT.2025.3616151.
    [14] CHEN Xu, MA Chunguang, ZHAO Chaofan, et al. UAV classification based on deep learning fusion of multidimensional UAV micro-Doppler image features[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3503205. doi: 10.1109/LGRS.2024.3371171.
    [15] MICLEA V C and NEDEVSCHI S. Dynamic semantically guided monocular depth estimation for UAV environment perception[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5605111. doi: 10.1109/TGRS.2023.3345475.
    [16] CHO E, KIM H, KIM P, et al. Obstacle avoidance of a UAV using fast monocular depth estimation for a wide stereo camera[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 1763–1773. doi: 10.1109/TIE.2024.3429611.
    [17] QIN Tong, LI Peiliang, and SHEN Shaojie. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020. doi: 10.1109/TRO.2018.2853729.
    [18] FROSI M and MATTEUCCI M. ART-SLAM: Accurate real-time 6DoF LiDAR SLAM[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2692–2699. doi: 10.1109/LRA.2022.3144795.
    [19] CHEN Yu, XU Bo, WANG Bin, et al. GNSS reconstrainted visual–inertial odometry system using factor graphs[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 8000305. doi: 10.1109/LGRS.2023.3236803.
    [20] SONG Boyi, YUAN Xianfeng, YING Zhongmou, et al. DGM-VINS: Visual–inertial SLAM for complex dynamic environments with joint geometry feature extraction and multiple object tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 8503711. doi: 10.1109/TIM.2023.3280533.
    [21] DENG Min, HU Jiwei, WEN Junxiang, et al. Object detection based visual SLAM optimization method for dynamic scene[J]. IEEE Sensors Journal, 2025, 25(9): 16480–16488. doi: 10.1109/JSEN.2025.3552797.
    [22] CAO Zhengyang and CHEN Gang. Enhanced deep reinforcement learning for integrated navigation in multi-UAV systems[J]. Chinese Journal of Aeronautics, 2025, 38(8): 103497. doi: 10.1016/j.cja.2025.103497.
    [23] JIANG Yingying, ZHU Ni, and RENAUDIN V. A voting-based robust estimator aided by INS redundancy for tightly coupled GNSS/INS integration in urban environment[J]. IEEE Transactions on Vehicular Technology, 2025, 74(9): 13430–13445. doi: 10.1109/TVT.2025.3560363.
    [24] HU Gaoge, WANG Wei, ZHONG Yongmin, et al. A new direct filtering approach to INS/GNSS integration[J]. Aerospace Science and Technology, 2018, 77: 755–764. doi: 10.1016/j.ast.2018.03.040.
    [25] CANH T N, NGUYEN V T, HOANGVAN X, et al. S3M: Semantic segmentation sparse mapping for UAVs with RGB-D camera[C]. Proceedings of 2024 IEEE/SICE International Symposium on System Integration (SII), 2024, Ha Long, Vietnam, 2024: 899–905. doi: 10.1109/SII58957.2024.10417379.
    [26] ZHAI Rui and YUAN Yunbin. A method of vision aided GNSS positioning using semantic information in complex urban environment[J]. Remote Sensing, 2022, 14(4): 869. doi: 10.3390/rs14040869.
    [27] KANG Xu, WANG Dejiang, SHAO Yu, et al. An efficient hybrid multi-station TDOA and single-station AOA localization method[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5657–5670. doi: 10.1109/TWC.2023.3235753.
    [28] LIU Qi, GAO Chengfa, SHANG Rui, et al. Hybrid GNSS+5G position and rotation estimation algorithm based on TOA and unit vector of arrival in urban environment[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 9512908. doi: 10.1109/TIM.2024.3427761.
    [29] CHEN Kai, LIANG Wenchao, and ZENG Chengzhi. Large-scale geomagnetic navigation for high-speed aircraft based on the gradient extraction neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5921111. doi: 10.1109/TGRS.2025.3604619.
    [30] MENG Chen, HU Qinglei, GE S S, et al. Trusted multisource fusion navigation for UAV under GNSS interference and spoofing attacks[J]. IEEE/ASME Transactions on Mechatronics, 2025: 1–11. doi: 10.1109/TMECH.2025.3570315. (查阅网上资料,未找到本条文献卷期号与页码,请确认).
    [31] LI Zhen, TAO Jun, LEI Zhuo, et al. Factor graph optimization-based RTK/INS integration with raw observations for robust positioning in urban canyons[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 9523511. doi: 10.1109/TIM.2025.3577823.
    [32] 胡杨林, 张天魁, 李博, 等. 无人机使能的通信感知一体化组网与技术研究综述[J]. 电子与信息学报, 2025, 47(4): 859–875. doi: 10.11999/JEIT241116.

    HU Yanglin, ZHANG Tiankui, LI Bo, et al. A survey on UAV-enabled integrated sensing and communication networking and technologies[J]. Journal of Electronics & Information Technology, 2025, 47(4): 859–875. doi: 10.11999/JEIT241116.
    [33] LI Sixian, DUO Bin, YUAN Xiaojun, et al. Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716–720. doi: 10.1109/LWC.2020.2966705.
    [34] HUA Meng, YANG Luxi, WU Qingqing, et al. UAV-assisted intelligent reflecting surface symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5769–5785. doi: 10.1109/TWC.2021.3070014.
    [35] HUA Meng, YANG Luxi, WU Qingqing, et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission[J]. IEEE Transactions on Communications, 2020, 68(9): 5908–5923. doi: 10.1109/TCOMM.2020.3003662.
    [36] MU Xidong, LIU Yuanwei, GUO Li, et al. Intelligent reflecting surface enhanced multi-UAV NOMA networks[J] IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3051–3066. doi: 10.1109/JSAC.2021.3088679.
    [37] HUA Meng, YANG Luxi, WU Qingqing, et al. UAV-assisted intelligent reflecting surface symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5769–5785. doi: 10.1109/TWC.2021.3070014. (查阅网上资料,本条文献与第34条文献重复,请确认).
    [38] CHEN Songchao, LIU Fang, and LIU Yuanan. Sum rate maximization for intelligent reflecting surface-assisted UAV-enabled NOMA network[J]. Electronics, 2023, 12(17): 3616. doi: 10.3390/electronics12173616.
    [39] ZHAO Bai, GUO Yan, XU Ba, et al. Combined UAV positioning with robust beamforming and IRS-enhanced NOMA transmission in cognitive UAV networks[J]. AEU-International Journal of Electronics and Communications, 2023, 168: 154727. doi: 10.1016/j.aeue.2023.154727.
    [40] SHAKHATREH H, SAWALMEH A, ALENEZI A H, et al. Mobile-IRS assisted next generation UAV communication networks[J]. Computer Communications, 2024, 215: 51–61. doi: 10.1016/j.comcom.2023.12.025.
    [41] ZHAO Yikun, ZHOU Fanqin, LIU Huaide, et al. PPO-based deployment and phase control for movable intelligent reflecting surface[J]. Journal of Cloud Computing, 2023, 12(1): 168. doi: 10.1186/s13677-023-00528-1.
    [42] ALAM M M, ARAFAT M Y, MOH S, et al. Topology control algorithms in multi-unmanned aerial vehicle networks: An extensive survey[J]. Journal of Network and Computer Applications, 2022, 207: 103495. doi: 10.1016/j.jnca.2022.103495.
    [43] 刘亚群, 谢钧, 邢长友, 等. 飞行自组网拓扑控制研究综述[J]. 通信学报, 2023, 44(8): 195–214. doi: 10.11959/j.issn.1000-436x.2023155.

    LIU Yaqun, XIE Jun, XING Changyou, et al. Comprehensive survey on topology control for flying ad-hoc network[J]. Journal on Communications, 2023, 44(8): 195–214. doi: 10.11959/j.issn.1000-436x.2023155.
    [44] GUO Qiang, YAN Jichen, and XU Wei. Localized fault tolerant algorithm based on node movement freedom degree in flying ad hoc networks[J]. Symmetry, 2019, 11(1): 106. doi: 10.3390/sym11010106.
    [45] LIU Yaqun, XIE Jun, XING Changyou, et al. Topology construction and topology adjustment in flying Ad hoc networks for relay transmission[J]. Computer Networks, 2023, 228: 109753. doi: 10.1016/j.comnet.2023.109753.
    [46] BASU P and REDI J. Movement control algorithms for realization of fault-tolerant ad hoc robot networks[J]. IEEE Network, 2004, 18(4): 36–44. doi: 10.1109/MNET.2004.1316760.
    [47] LIU Chao and ZHANG Zhongshan. Towards a robust FANET: Distributed node importance estimation-based connectivity maintenance for UAV swarms[J]. Ad Hoc Networks, 2022, 125: 102734. doi: 10.1016/j.adhoc.2021.102734.
    [48] GAYDAMAKA A, SAMUYLOV A, MOLTCHANOV D, et al. Dynamic topology organization and maintenance algorithms for autonomous UAV swarms[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 4423–4439. doi: 10.1109/TMC.2023.3293034.
    [49] WANG Huibin, CHEN Ming, and WEI Xianglin. A k-hop constrained reachability based proactive connectivity maintaining mechanism of UAV swarm networks[J]. Journal of Internet Technology, 2023, 24(6): 1329–1341. doi: 10.53106/160792642023112406015.
    [50] TOSUN M, CABUK U C, HAYTAOGLU E, et al. DPkCR: Distributed proactive k-connectivity recovery algorithm for UAV-based MANETs[J]. IEEE Transactions on Reliability, 2024, 73(4): 1918–1932. doi: 10.1109/TR.2024.3370743.
    [51] SUN Wenbin, ZHAO Lei, YANG Xin, et al. Joint topology reconstruction and resource allocation for UAV-IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(22): 36452–36464. doi: 10.1109/JIOT.2024.3406045.
    [52] ZHANG Le, DU Ye, XU Jinqi, et al. UAV-enabled IoT: Cascading failure model and topology-control-based recovery scheme[J]. IEEE Internet of Things Journal, 2024, 11(12): 22562–22577. doi: 10.1109/jiot.2024.3381735.
    [53] FU Luwei, ZHAO Zhiwei, MIN Geyong, et al. Towards accurate and low-cost path reconstruction in mobile UAV networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17279–17290. doi: 10.1109/TITS.2024.3408811.
    [54] 王侃, 曹铁林, 李旭杰, 等. 无人机辅助边缘计算网络轨迹规划与资源分配研究综述[J]. 电子与信息学报, 2025, 47(5): 1266–1281. doi: 10.11999/JEIT241071.

    WANG Kan, CAO Tielin, LI Xujie, et al. A survey on trajectory planning and resource allocation in unmanned aerial vehicle-assisted edge computing networks[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1266–1281. doi: 10.11999/JEIT241071.
    [55] DENG Yiqin, CHEN Zhigang, CHEN Xianhao, et al. Task offloading in multi-hop relay-aided multi-access edge computing[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1372–1376. doi: 10.1109/TVT.2022.3204398.
    [56] KUANG Zhufang, PAN Yihui, YANG Fan, et al. Joint task offloading scheduling and resource allocation in air–ground cooperation UAV-enabled mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5796–5807. doi: 10.1109/TVT.2023.3334143.
    [57] WANG Xiong, YE Jiancheng, and LIU J C S. Online learning aided decentralized multi-user task offloading for mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 3328–3342. doi: 10.1109/TMC.2023.3275851.
    [58] 王义君, 李嘉欣, 闫志颖, 等. 基于深度强化学习的移动边缘计算安全传输策略研究[J]. 通信学报, 2025, 46(4): 272–281. doi: 10.11959/j.issn.1000-436x.2025060.

    WANG Yijun, LI Jiaxin, YAN Zhiying, et al. Research on secure transport strategy of mobile edge computing based on deep reinforcement learning[J]. Journal on Communications, 2025, 46(4): 272–281. doi: 10.11959/j.issn.1000-436x.2025060.
    [59] ZHOU Lei, CHEN Ying, LI Kaixin, et al. Stackelberg-game-based computation offloading in urban IoT systems with AAV-assisted multiaccess edge computing[J]. IEEE Internet of Things Journal, 2025, 12(7): 8178–8191. doi: 10.1109/JIOT.2024.3505143.
    [60] ZHANG Jianshan, LUO Haibo, CHEN Xing, et al. Minimizing response delay in UAV-assisted mobile edge computing by joint UAV deployment and computation offloading[J]. IEEE Transactions on Cloud Computing, 2024, 12(4): 1372–1386. doi: 10.1109/TCC.2024.3478172.
    [61] WANG Boxiong, KANG Hui, LI Jiahui, et al. AAV-assisted joint mobile edge computing and data collection via matching-enabled deep reinforcement learning[J]. IEEE Internet of Things Journal, 2025, 12(12): 19782–19800. doi: 10.1109/JIOT.2025.3542025.
    [62] CHEN Haosheng, CUI Haixia, WANG Jiahuan, et al. Computation offloading optimization for UAV-based cloud-edge collaborative task scheduling strategy[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(6): 4240–4253. doi: 10.1109/TCCN.2025.3544822.
    [63] CHEN Zhuoyue, YANG Yaozong, XU Jiajie, et al. Task offloading and resource pricing based on game theory in UAV-assisted edge computing[J]. IEEE Transactions on Services Computing, 2025, 18(1): 440–452. doi: 10.1109/TSC.2024.3512936.
    [64] JI Jiequ, ZHU Kun, NIYATO D, et al. Joint cache placement, flight trajectory, and transmission power optimization for multi-UAV assisted wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5389–5403. doi: 10.1109/TWC.2020.2992926.
    [65] ZHANG Mingze, EI-HAJJAR M, and NG S X. Intelligent caching in UAV-aided networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 739–752. doi: 10.1109/TVT.2021.3125396.
    [66] ZHOU Fasheng, WANG Ning, LUO Gaoyong, et al. Edge caching in multi-UAV-enabled radio access networks: 3D modeling and spectral efficiency optimization[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 329–341. doi: 10.1109/TSIPN.2020.2986360.
    [67] WEI Qing, CHEN Yingyang, JIA Ziye, et al. Energy-efficient caching and user selection for resource-limited SAGINs in emergency communications[J]. IEEE Transactions on Communications, 2025, 73(6): 4121–4136. doi: 10.1109/TCOMM.2024.3511958.
    [68] LI Xuanheng, LIU Jiahong, CHEN Xianhao, et al. Caching on the sky: A multiagent federated reinforcement learning approach for UAV-assisted edge caching[J]. IEEE Internet of Things Journal, 2024, 11(17): 28213–28226. doi: 10.1109/JIOT.2024.3401219.
    [69] LIU Yinan, YANG Chao, CHEN Xin, et al. Joint hybrid caching and replacement scheme for UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 866–878. doi: 10.1109/TIV.2023.3323217.
    [70] ZHOU Ruiting, HUANG Yifeng, WANG Yufeng, et al. User preference oriented service caching and task offloading for UAV-assisted MEC networks[J]. IEEE Transactions on Services Computing, 2025, 18(2): 1097–1109. doi: 10.1109/TSC.2025.3536319.
    [71] YANG Die, ZHAN Cheng, YANG Yang, et al. Integrating UAVs and D2D communication for MEC network: A collaborative approach to caching and computation[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 10041–10046. doi: 10.1109/TVT.2025.3540915.
    [72] MAALE G T, KUADEY N A E, ARAFAT Y, et al. Multi-task learning for UAV trajectory and caching with federated cloud-assisted knowledge distillation[J]. IEEE Transactions on Network and Service Management, 2025, 22(3): 2516–2533. doi: 10.1109/TNSM.2025.3547743.
    [73] SHEN K, SHIVGAN R, MEDINA J, et al. Multidepot drone path planning with collision avoidance[J]. IEEE Internet of Things Journal, 2022, 9(17): 16297–16307. doi: 10.1109/JIOT.2022.3151791.
    [74] SAEED R A, OMRI M, ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications, 2022, 34(12): 10133–10155. doi: 10.1007/s00521-022-06998-9.
    [75] JAYAWEERA H M P C and HANOUN S. Path planning of unmanned aerial vehicles (UAVs) in windy environments[J]. Drones, 2022, 6(5): 101. doi: 10.3390/drones6050101.
    [76] HUANG Xiongwei, LIU Yongping, HUANG Lizhen, et al. BIM-supported drone path planning for building exterior surface inspection[J]. Computers in Industry, 2023, 153: 104019. doi: 10.1016/j.compind.2023.104019.
    [77] YANMAZ E. Joint or decoupled optimization: Multi-UAV path planning for search and rescue[J]. Ad Hoc Networks, 2023, 138: 103018. doi: 10.1016/j.adhoc.2022.103018.
    [78] YANG Tongyao, YANG Fengbao, and LI Dingzhu. A new autonomous method of drone path planning based on multiple strategies for avoiding obstacles with high speed and high density[J]. Drones, 2024, 8(5): 205. doi: 10.3390/drones8050205.
    [79] GÜVEN İ and YANMAZ E. Multi-objective path planning for multi-UAV connectivity and area coverage[J]. Ad Hoc Networks, 2024, 160: 103520. doi: 10.1016/j.adhoc.2024.103520.
    [80] KIM M J, KANG T Y, and RYOO C K. Real-time path planning for unmanned aerial vehicles based on compensated Voronoi diagram[J]. International Journal of Aeronautical and Space Sciences, 2025, 26(1): 235–244. doi: 10.1007/s42405-024-00771-z.
    [81] WU Yu, GOU Jinzhan, HU Xinting, et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107: 106332. doi: 10.1016/j.ast.2020.106332.
    [82] XI Meng, WEN Jiabao, HE Jingyi, et al. An expert experience-enhanced security control approach for AUVs of the underwater transportation cyber-physical systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(9): 14086–14098. doi: 10.1109/TITS.2024.3524730.
    [83] YAN Ziwei, HAN Liang, LI Xiaoduo, et al. Event-Triggered formation control for time-delayed discrete-Time multi-Agent system applied to multi-UAV formation flying[J]. Journal of the Franklin Institute, 2023, 360(5): 3677–3699. doi: 10.1016/j.jfranklin.2023.01.036.
    [84] CHEN Hao, WANG Xiangke, SHEN Lincheng, et al. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach[J]. Chinese Journal of Aeronautics, 2021, 34(2): 504–515. doi: 10.1016/j.cja.2020.03.006.
    [85] TAO Canhui, ZHANG Ru, SONG Zhiping, et al. Multi-UAV formation control in complex conditions based on improved consistency algorithm[J]. Drones, 2023, 7(3): 185. doi: 10.3390/drones7030185.
    [86] ZHOU Jinlun, ZHANG Honghai, HUA Mingzhuang, et al. P-DRL: A framework for multi-UAVs dynamic formation control under operational uncertainty and unknown environment[J]. Drones, 2024, 8(9): 475. doi: 10.3390/drones8090475.
    [87] MANDAL P, ROY L P, and DAS S K. Topology control of drones using bio-inspired intelligent firefly-grasshopper algorithm for searching intruder unmanned aerial vehicle[J]. IETE Journal of Research, 2024, 70(3): 2269–2285. doi: 10.1080/03772063.2023.2191999.
    [88] ASCI M, DAGDEVIREN Z A, AKRAM V K, et al. Enhancing drone network resilience: Investigating strategies for k-connectivity restoration[J]. Computer Standards & Interfaces, 2025, 92: 103941. doi: 10.1016/j.csi.2024.103941.
    [89] WANG Yuanzhe, YUE Yufeng, SHAN Mao, et al. Formation reconstruction and trajectory replanning for multi-UAV patrol[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 719–729. doi: 10.1109/TMECH.2021.3056099.
    [90] GAO Chenyang, MA Jianfeng, LI Teng, et al. Hybrid swarm intelligent algorithm for multi-UAV formation reconfiguration[J]. Complex & Intelligent Systems, 2023, 9(2): 1929–1962. doi: 10.1007/s40747-022-00891-7.
    [91] HU Ye, CHEN Mingzhe, SAAD W, et al. Distributed multi-agent meta learning for trajectory design in wireless drone networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3177–3192. doi: 10.1109/JSAC.2021.3088689.
    [92] MORILLA-CABELLO D, BARTOLOMEI L, TEIXEIRA L, et al. Sweep-your-map: Efficient coverage planning for aerial teams in large-scale environments[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10810–10817. doi: 10.1109/LRA.2022.3194686.
    [93] LIU Xinbin, WANG Ye, GAO Hui, et al. A coverage-aware task allocation method for UAV-assisted mobile crowd sensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10642–10654. doi: 10.1109/TVT.2024.3374719.
    [94] FAN Kexin, FENG Bowen, ZHANG Xilin, et al. Demand-driven task scheduling and resource allocation in space-air-ground integrated network: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 13053–13067. doi: 10.1109/TWC.2024.3398199.
    [95] ZHANG Jing, REN Jia, CUI Yani, et al. Multi-USV task planning method based on improved deep reinforcement learning[J]. IEEE Internet of Things Journal, 2024, 11(10): 18549–18567. doi: 10.1109/JIOT.2024.3363044.
    [96] LI Yibing, ZHANG Zitang, HE Zongyu, et al. A heuristic task allocation method based on overlapping coalition formation game for heterogeneous UAVs[J]. IEEE Internet of Things Journal, 2024, 11(17): 28945–28959. doi: 10.1109/JIOT.2024.3406336.
    [97] ZHAI Shaobo, LI Guangwen, WU Guo, et al. Cooperative task allocation for multi heterogeneous aerial vehicles using particle swarm optimization algorithm and entropy weight method[J]. Applied Soft Computing, 2023, 148: 110918. doi: 10.1016/j.asoc.2023.110918.
    [98] TAN Yifang, ZHOU Chao, and QIAN Feng. Cooperative task allocation method for multi-unmanned aerial vehicles based on the modified genetic algorithm[J]. IET Intelligent Transport Systems, 2024, 18(6): 1164–1173. doi: 10.1049/itr2.12495.
    [99] LI Xueqing, LU Xinpeng, CHEN Wenhao, et al. Research on UAVs reconnaissance task allocation method based on communication preservation[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 684–695. doi: 10.1109/TCE.2024.3368062.
    [100] LI Mincan, WANG Zidong, LI Kenli, et al. Task allocation on layered multiagent systems: When evolutionary many-objective optimization meets deep Q-learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 842–855. doi: 10.1109/TEVC.2021.3049131.
    [101] YI Bo, LV Jianhui, CHEN Jiahao, et al. Digital twin constructed spatial structure for flexible and efficient task allocation of drones in mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3430–3443. doi: 10.1109/JSAC.2023.3313193.
    [102] WANG Shengli, LIU Youjiang, QIU Yongtao, et al. Consensus-based decentralized task allocation for multi-agent systems and simultaneous multi-agent tasks[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12593–12600. doi: 10.1109/LRA.2022.3220155.
    [103] YE Fang, CHEN Jie, SUN Qian, et al. Decentralized task allocation for heterogeneous multi-UAV system with task coupling constraints[J]. The Journal of Supercomputing, 2021, 77(1): 111–132. doi: 10.1007/s11227-020-03264-4.
    [104] 贾永楠. 低空空域无人系统交通管理方案初探[J]. 航空学报, 2025, 46(11): 531399. doi: 10.7527/S1000-6893.2025.31399.

    JIA Yongnan. A scheme for unmanned aerial system traffic management in low-altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531399. doi: 10.7527/S1000-6893.2025.31399.
    [105] YAZICI A and BAYKAL B. Detection and localization of drones in MIMO CW radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 226–238. doi: 10.1109/TAES.2023.3321586.
    [106] SAYED A N, RAMAHI O M, and SHAKER G. Machine learning for UAV classification employing mechanical control information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 68–81. doi: 10.1109/TAES.2023.3272303.
    [107] SHOUFAN A and DAMIANI E. Contingency clarification protocols for reliable counter-drone operation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8944–8955. doi: 10.1109/TAES.2023.3313573.
    [108] 钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-22
  • 录用日期:  2025-12-22
  • 网络出版日期:  2026-01-02

目录

    /

    返回文章
    返回