高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海不确定环境条件下远程水声通信性能分析与快速预报

陈香梅 台玉朋 王海斌 胡承昊 汪俊 王迪雅

陈香梅, 台玉朋, 王海斌, 胡承昊, 汪俊, 王迪雅. 深海不确定环境条件下远程水声通信性能分析与快速预报[J]. 电子与信息学报. doi: 10.11999/JEIT251244
引用本文: 陈香梅, 台玉朋, 王海斌, 胡承昊, 汪俊, 王迪雅. 深海不确定环境条件下远程水声通信性能分析与快速预报[J]. 电子与信息学报. doi: 10.11999/JEIT251244
CHEN Xiangmei, TAI Yupeng, WANG Haibin, HU Chenghao, WANG Jun, WANG diya. Performance Analysis and Rapid Prediction of Long-Range Underwater Acoustic Communications in Uncertain Deep-Sea Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251244
Citation: CHEN Xiangmei, TAI Yupeng, WANG Haibin, HU Chenghao, WANG Jun, WANG diya. Performance Analysis and Rapid Prediction of Long-Range Underwater Acoustic Communications in Uncertain Deep-Sea Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251244

深海不确定环境条件下远程水声通信性能分析与快速预报

doi: 10.11999/JEIT251244 cstr: 32379.14.JEIT251244
基金项目: 国家自然科学基金 (62301551)
详细信息
    作者简介:

    陈香梅:女,博士生,研究方向为水声通信

    台玉朋:男,研究员,研究方向为水声通信

    王海斌:男,研究员,研究方向为水声通信

    胡承昊:男,助理研究员,研究方向为水声通信

    汪俊:男,研究员,研究方向为水声通信

    王迪雅:女,博士后,研究方向为水声通信

    通讯作者:

    王海斌 whb@mail.ioa.ac.cn

  • 中图分类号: TN929.3

Performance Analysis and Rapid Prediction of Long-Range Underwater Acoustic Communications in Uncertain Deep-Sea Environments

Funds: The National Natural Science Foundation of China (62301551)
  • 摘要: 在复杂且动态变化的海洋环境中,通信性能起伏显著且难以预估,传统依赖反馈链路进行信道状态估计与参数调整的方法难以适用于深海远程水声通信。为此,该文提出一种基于深度学习声场不确定预估的水声通信性能分析与快速预报方法,在无反馈条件下实现通信参数与信道状态的高效匹配。该方法基于深度学习快速预测的传播损失概率分布,构建了从传播损失到信噪比,再到统计信道容量与中断容量的链式映射模型,实现环境不确定性与通信性能的量化映射。进一步结合典型深海单载波通信系统在特定信道条件下的链路性能与传播损失的统计特性,提出通信“速率—可靠性”预报方法,评估不同速率下的可靠通信概率,从而为复杂动态环境下的系统参数匹配提供依据。海上试验结果表明,所提方法在复杂信道环境下对通信“速率—可靠性”的预报与实测结果高度一致:会聚区与影区各速率点上的可靠概率偏差分别为0.9%~4%和1%~9%;以90%可靠通信概率为阈值时,预报的最大可靠速率与实测结果一致,验证了该方法在深海远程水声通信中的准确性和实用性。
  • 图  1  基于声场不确定性预估的通信前馈式性能分析和快速预报方法

    图  2  基于DL的声场不确定性快速预测

    图  3  DL模型结构

    图  4  用于测试的基础环境

    图  5  基础环境对应的TL场

    图  6  两个方法在不同接收点得到的TL-PDF

    图  7  不同接收深度和距离处统计信道容量

    图  8  不同深度下统计容量和中断容量随距离的变化

    图  9  不同接收点处的仿真信道

    图  10  不同接收点处的SNR-PDF

    图  11  不同接收点处在各调制编码方案下的误码率曲线

    图  12  不同接收点处可靠通信概率

    图  13  实验海区的地形、声速剖面和沉积层参数

    图  14  声源和接收点在TL场中的位置

    图  15  两个接收点处的TL-PDF和SNR-PDF

    图  16  A点处的信道和误码率曲线

    图  17  B点处的信道和误码率曲线

    图  18  两个接收点处不同通信速率的可靠通信概率

    表  1  通信系统采用的调制编码方案

    方案m123456789101112131415
    调制阶数222224444888161616
    编码码率1/41/22/33/45/61/22/33/45/62/33/45/62/33/45/6
    速率(bps)17344550566789100112135150167177200222
    下载: 导出CSV

    表  2  试验参数

    试验
    参数
    接收机采样频率
    (kHz)
    信号带宽
    (Hz)
    中心频率
    (Hz)
    通信距离
    (km)
    符号宽度
    (ms)
    发射声源级
    (dB)
    发射深度
    (m)
    信号长度
    (bit)
    通信速率
    (bps)
    取值 4 100 500 72.6km 15 190 500 192 20、25、
    50、100、200
    下载: 导出CSV
  • [1] KILFOYLE D B and BAGGEROER A B. The state of the art in underwater acoustic telemetry[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 4–27. doi: 10.1109/48.820733.
    [2] STOJANOVIC M and PREISIG J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/mcom.2009.4752682.
    [3] PREISIG J C. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment[J]. The Journal of the Acoustical Society of America, 2005, 118(1): 263–278. doi: 10.1121/1.1907106.
    [4] 杨健敏, 王佳惠, 乔钢, 等. 水声通信及网络技术综述[J]. 电子与信息学报, 2024, 46(1): 1–21. doi: 10.11999/JEIT230424.

    YANG Jianmin, WANG Jiahui, QIAO Gang, et al. Review of underwater acoustic communication and network technology[J]. Journal of Electronics & Information Technology, 2024, 46(1): 1–21. doi: 10.11999/JEIT230424.
    [5] 罗亚松, 许江湖, 胡洪宁, 等. 正交频分复用传输速率最大化自适应水声通信算法研究[J]. 电子与信息学报, 2015, 37(12): 2872–2876. doi: 10.11999/JEIT150440.

    LUO Yasong, XU Jianghu, HU Hongning, et al. Research on self-adjusting OFDM underwater acoustic communication algorithm for transmission rate maximization[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2872–2876. doi: 10.11999/JEIT150440.
    [6] ZHANG Yonglin, TAI Yupeng, WANG Diya, et al. Online machine learning-based channel estimation for underwater acoustic communications[J]. The Journal of the Acoustical society of American, 2024, 155(S3): A88–A89. doi: 10.1121/10.0026909.
    [7] HU Yunfeng, TAO Jun, and TONG Feng. Estimation of time-varying underwater acoustic channels via an improved sparse adaptive orthogonal matching pursuit algorithm[J]. Applied Acoustics, 2025, 233: 110624. doi: 10.1016/j.apacoust.2025.110624.
    [8] 刘志勇, 金子皓, 杨洪娟, 等. 基于深度学习的水声信道联合多分支合并与均衡算法[J]. 电子与信息学报, 2024, 46(5): 2004–2010. doi: 10.11999/JEIT231196.

    LIU Zhiyong, JIN Zihao, YANG Hongjuan, et al. Deep learning-based joint multi-branch merging and equalization algorithm for underwater acoustic channel[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2004–2010. doi: 10.11999/JEIT231196.
    [9] 刘凇佐, 韩雪, 马璐, 等. 基于排序码本的水声自适应OFDM通信中信道状态信息反馈研究[J]. 电子与信息学报, 2024, 46(5): 2095–2103. doi: 10.11999/JEIT230878.

    LIU Songzuo, HAN Xue, MA Lu, et al. Research on channel state information feedback in underwater acoustic adaptive OFDM communication based on sequenced codebook[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2095–2103. doi: 10.11999/JEIT230878.
    [10] JING Lianyou, DONG Chaofan, HE Chengbing, et al. Adaptive modulation and coding for underwater acoustic OTFS communications based on meta-learning[J]. IEEE Communications Letters, 2024, 28(8): 1845–1849. doi: 10.1109/lcomm.2024.3418192.
    [11] HUANG Jianchun and DIAMANT R. Adaptive modulation for long-range underwater acoustic communication[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6844–6857. doi: 10.1109/twc.2020.3006230.
    [12] BUSACCA F, GALLUCCIO L, PALAZZO S, et al. Adaptive versus predictive techniques in underwater acoustic communication networks[J]. Computer Networks, 2024, 252: 110679. doi: 10.1016/j.comnet.2024.110679.
    [13] 笪良龙, 过武宏, 赵建昕, 等. 海洋-声学耦合模式捕捉水声环境不确定性[J]. 声学学报, 2015, 40(3): 477–486. doi: 10.15949/j.cnki.0371-0025.2015.03.016.

    DA Lianglong, GUO Wuhong, ZHAO Jianxin, et al. Capture uncertainty of underwater environment by ocean-acoustic coupled model[J]. Acta Acustica, 2015, 40(3): 477–486. doi: 10.15949/j.cnki.0371-0025.2015.03.016.
    [14] LV Zhichao, DU Libin, LI Huming, et al. Influence of temporal and spatial fluctuations of the shallow sea acoustic field on underwater acoustic communication[J]. Sensors, 2022, 22(15): 5795. doi: 10.3390/s22155795.
    [15] GAO Fei, XU Fanghua, LI Zhenglin, et al. Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model[J]. Chinese Physics B, 2023, 32(3): 034302. doi: 10.1088/1674-1056/ac89dc.
    [16] FENG Xiao, CHEN Cheng, and YANG Kunde. Fast estimation algorithm of sound field characteristics under the disturbance of sound speed profile in the marine environment[J]. Ocean Engineering, 2024, 297: 117197. doi: 10.1016/j.oceaneng.2024.117197.
    [17] KHAZAIE S, WANG Xun, KOMATITSCH D, et al. Uncertainty quantification for acoustic wave propagation in a shallow water environment[J]. Wave Motion, 2019, 91: 102390. doi: 10.1016/j.wavemoti.2019.102390.
    [18] LEE B M, JOHNSON J R, and DOWLING D R. Predicting acoustic transmission loss uncertainty in ocean environments with neural networks[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1548. doi: 10.3390/jmse10101548.
    [19] CHEN Xiangmei, LI Chao, WANG Haibin, et al. A spatially informed machine learning method for predicting sound field uncertainty[J]. Journal of Marine Science and Engineering, 2025, 13(3): 429. doi: 10.3390/jmse13030429.
    [20] GIBBS A L and SU F E. On choosing and bounding probability metrics[J]. International Statistical Review, 2002, 70(3): 419–435. doi: 10.2307/1403865.
    [21] WENZ G M. Acoustic ambient noise in the ocean: Spectra and sources[J]. The Journal of the Acoustical Society of America, 1962, 34(12): 1936–1956. doi: 10.1121/1.1909155.
    [22] JIANG Dongge, LI Zhenglin, QIN Jixing, et al. Characterization and modeling of wind-dominated ambient noise in South China Sea[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 124321. doi: 10.1007/s11433-017-9088-5.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回