高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PSAQNet:面向真实失真无参考图像质量评价的感知结构自适应质量网络

贾惠珍 赵宇轩 傅鹏 王同罕

贾惠珍, 赵宇轩, 傅鹏, 王同罕. PSAQNet:面向真实失真无参考图像质量评价的感知结构自适应质量网络[J]. 电子与信息学报. doi: 10.11999/JEIT251220
引用本文: 贾惠珍, 赵宇轩, 傅鹏, 王同罕. PSAQNet:面向真实失真无参考图像质量评价的感知结构自适应质量网络[J]. 电子与信息学报. doi: 10.11999/JEIT251220
JIA Huizhen, ZHAO Yuxuan, FU Peng, WANG Tonghan. PSAQNet: A Perceptual Structure Adaptive Quality Network for Authentic Distortion Oriented No-reference Image Quality Assessment[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251220
Citation: JIA Huizhen, ZHAO Yuxuan, FU Peng, WANG Tonghan. PSAQNet: A Perceptual Structure Adaptive Quality Network for Authentic Distortion Oriented No-reference Image Quality Assessment[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251220

PSAQNet:面向真实失真无参考图像质量评价的感知结构自适应质量网络

doi: 10.11999/JEIT251220 cstr: 32379.14.JEIT251220
基金项目: 国家自然科学基金(62266001, 62261001)
详细信息
    作者简介:

    贾惠珍:女,副教授,研究方向为计算机视觉、模式识别、图像质量评价

    赵宇轩:男,在读硕士生,研究方向为图像质量评价、计算机视觉

    傅鹏:男,副教授,研究方向为模式识别与图像处理

    王同罕:男,副教授,研究方向为计算机视觉、模式识别、图像质量评价

    通讯作者:

    王同罕 thwang@ecut.edu.cn

  • 中图分类号: TP391

PSAQNet: A Perceptual Structure Adaptive Quality Network for Authentic Distortion Oriented No-reference Image Quality Assessment

Funds: National Natural Science Foundation of China (62266001, 62261001)
  • 摘要: 针对无参考图像质量评价方法在真实场景中存在鲁棒性不够、泛化能力不足、几何结构建模欠缺的问题,该文提出一种基于感知结构自适应质量网络(Perceptual Structure-Adaptive Quality Network, PSAQNet)的无参考图像质量评价方法。首先,利用预训练 CNN 提取多尺度特征,并通过高级失真增强模块对多分支特征进行门控筛选与适配,突出与失真相关的区域、抑制无关干扰;其次,引入通道感知自适应核卷积与空间引导卷积,从通道重标定、自适应采样以及空间引导调制等角度增强对旋转、扭曲等几何退化的建模与对齐能力;接着,将增强后的多尺度卷积特征经自适应池化与投影转换为token序列,并通过交叉注意力机制与Transformer全局表示进行选择性交互,实现局部细节与全局语义的有效融合;最后,在融合过程中结合分组卷积注意力进一步强调失真显著区域,通过预测头回归得到图像质量分数。在六个经典的数据库上进行实验结果显示,PSAQNet在PLCC/SRCC等相关性指标上优于多种代表性无参考图像质量评价方法。尤其在复杂失真和跨数据库测试中展现出更强的鲁棒性与泛化能力。
  • 图  1  PSAQNet模型结构

    图  2  高级失真增强模块

    图  3  空间-通道自适应提取器

    图  4  空间引导卷积模块

    图  5  通道感知自适应核卷积

    图  6  注意力引导注入模块

    图  7  分组卷积块注意力模块

    表  1  本实验使用的六个数据集

    DatasetDist imagesDist TypesDataset type
    LIVE7795Synthetic
    CSIQ8666Synthetic
    TID2013300024Synthetic
    KADID-10K1012525Synthetic
    LIVEC1162-Authentic
    KONIQ-10K10073-Authentic
    下载: 导出CSV

    表  2  与经典和最新的模型的对比结果

    MethodCSIQTID2013LIVEKADID-10KLIVECKONIQ-10K
    PLCCSRCCPLCCSRCCPLCCSRCCPLCCSRCCPLCCSRCCPLCCSRCC
    TReS0.9420.9220.8830.8630.9680.9690.8580.8590.8770.8460.9280.915
    LoDa0.9680.9610.9010.8690.9790.9750.9360.9310.8870.8710.9340.920
    SaTQA0.9720.9650.9310.9480.9830.9830.9490.9460.8990.8770.9410.930
    MDM-GFIQA0.9730.9650.9360.9290.9760.9760.9210.9180.9080.8870.9420.930
    Ours0.9790.9740.9380.9290.9880.9870.9420.9370.9080.8870.9430.935
    下载: 导出CSV

    表  3  消融实验结果

    Method KonIQ-10k TID2013
    PLCC SRCC PLCC SRCC
    baseline 0.934 0.920 0.901 0.869
    baseline+DEM+CA_AK 0.936 0.925 0.924 0.922
    baseline+DEM+SGC 0.934 0.927 0.925 0.920
    baseline+CA_AK+SGC 0.936 0.924 0.922 0.919
    baseline+DEM+CA_AK+SGC 0.938 0.927 0.932 0.925
    baseline+DEM+CA_AK+
    GroupCBAM
    0.936 0.930 0.933 0.923
    baseline+DEM+SGC+
    GroupCBAM
    0.939 0.931 0.930 0.926
    PSAQNet 0.943 0.935 0.938 0.929
    下载: 导出CSV

    表  4  泛化性能测评

    Train on KONIQ-10K KADID-10k LIVE
    Test on LIVEC KONIQ10K CSIQ TID2013
    HyperIQA 0.785 0.648 0.744 0.551
    TReS 0.786 0.606 0.761 0.562
    LoDa 0.794 0.654 0.823 0.621
    SaTQA 0.791 0.661 0.831 0.627
    MDM-GFIQA 0.813 0.670 0.840 0.641
    Ours 0.817 0.677 0.842 0.659
    下载: 导出CSV
  • [1] 韩玉兰, 崔玉杰, 罗轶宏, 等. 基于密集残差和质量评估引导的频率分离生成对抗超分辨率重构网络[J]. 电子与信息学报, 2024, 46(12): 4563–4574. doi: 10.11999/JEIT240388.

    HAN Yulan, CUI Yujie, LUO Yihong, et al. Frequency separation generative adversarial super-resolution reconstruction network based on dense residual and quality assessment[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4563–4574. doi: 10.11999/JEIT240388.
    [2] 柏园超, 刘文昌, 江俊君, 等. 深度神经网络图像压缩方法进展综述[J]. 电子与信息学报, 2025, 47(11): 4112–4128. doi: 10.11999/JEIT250567.

    BAI Yuanchao, LIU Wenchang, JIANG Junjun, et al. Advances in deep neural network based image compression: A survey[J]. Journal of Electronics & Information Technology, 2025, 47(11): 4112–4128. doi: 10.11999/JEIT250567.
    [3] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
    [4] WANG Zhou, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 1398–1402. doi: 10.1109/ACSSC.2003.1292216.
    [5] YANG Jie, LYU Mengjin, QI Zhiquan, et al. Deep learning based image quality assessment: A survey[J]. Procedia Computer Science, 2023, 221: 1000–1005. doi: 10.1016/j.procs.2023.08.080.
    [6] MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350–3364. doi: 10.1109/TIP.2011.2147325.
    [7] MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050.
    [8] BOSSE S, MANIRY D, MÜLLER K R, et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Transactions on Image Processing, 2018, 27(1): 206–219. doi: 10.1109/TIP.2017.2760518.
    [9] ZHANG Lin, ZHANG Lei, and BOVIK A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2579–2591. doi: 10.1109/TIP.2015.2426416.
    [10] ZHANG Weixia, MA Kede, YAN Jia, et al. Blind image quality assessment using a deep bilinear convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 36–47. doi: 10.1109/TCSVT.2018.2886771.
    [11] KE Junjie, WANG Qifei, WANG Yilin, et al. MUSIQ: Multi-scale image quality transformer[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 5128–5137. doi: 10.1109/ICCV48922.2021.00510.
    [12] CHEON M, YOON S J, KANG B, et al. Perceptual image quality assessment with transformers[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, USA, 2021: 433–442. doi: 10.1109/CVPRW53098.2021.00054.
    [13] CHEN Zewen, QIN Haina, WANG Juan, et al. PromptIQA: Boosting the performance and generalization for no-reference image quality assessment via prompts[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2024: 247–264. doi: 10.1007/978-3-031-73232-4_14.
    [14] ZHANG Bo, WANG Luoxi, ZHANG Cheng, et al. No-reference image quality assessment based on improved vision transformer and transfer learning[J]. Signal Processing: Image Communication, 2025, 135: 117282. doi: 10.1016/j.image.2025.117282.
    [15] 郭颖聪, 唐天航, 刘怡光. 基于Transformer与权重令牌引导的双分支无参考图像质量评价网络[J]. 四川大学学报: 自然科学版, 2025, 62(4): 847–856. doi: 10.19907/j.0490-6756.240396.

    GUO Yingcong, TANG Tianhang, and LIU Yiguang. A dual-branch no-reference image quality assessment network guided by Transformer and a weight token[J]. Journal of Sichuan University: Natural Science Edition, 2025, 62(4): 847–856. doi: 10.19907/j.0490-6756.240396.
    [16] 陈勇, 朱凯欣, 房昊, 等. 基于空间分布分析的混合失真无参考图像质量评价[J]. 电子与信息学报, 2020, 42(10): 2533–2540. doi: 10.11999/JEIT190721.

    CHEN Yong, ZHU Kaixin, FANG Hao, et al. No-reference image quality evaluation for multiply-distorted images based on spatial domain coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533–2540. doi: 10.11999/JEIT190721.
    [17] XU Kangmin, LIAO Liang, XIAO Jing, et al. Boosting image quality assessment through efficient transformer adaptation with local feature enhancement[C]. Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 2662–2672. doi: 10.1109/CVPR52733.2024.00257.
    [18] SHI Jinsong, GAO Pan, and QIN Jie. Transformer-based no-reference image quality assessment via supervised contrastive learning[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 4829–4837. doi: 10.1609/aaai.v38i5.28285.
    [19] SU Shaolin, YAN Qingsen, ZHU Yu, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 3664–3673. doi: 10.1109/CVPR42600.2020.00372.
    [20] HOSU V, LIN Hanhe, SZIRANYI T, et al. KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment[J]. IEEE Transactions on Image Processing, 2020, 29: 4041–4056. doi: 10.1109/TIP.2020.2967829.
    [21] LI Aobo, WU Jinjian, LIU Yongxu, et al. Bridging the synthetic-to-authentic gap: Distortion-guided unsupervised domain adaptation for blind image quality assessment[C]. Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 28422–28431. doi: 10.1109/CVPR52733.2024.02685.
    [22] GU Liping, LI Tongyan, and HE Jiyong. Classification of diabetic retinopathy grade based on G-ENet convolutional neural network model: Convolutional neural networks are used to solve the problem of diabetic retinopathy grade classification[C]. Proceedings of 2023 7th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 2023: 1590–1594. doi: 10.1145/3650400.3650666.
    [23] LI Yuhao and ZHANG Aihua. AKA-MobileNet: A cloud-noise-robust lightweight convolution neural network[C]. Proceedings of 2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Dalian, China, 2024: 188–193. doi: 10.1109/YAC63405.2024.10598582.
    [24] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich: Springer, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [25] SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117–2128. doi: 10.1109/TIP.2005.859389.
    [26] LARSON E C and CHANDLER D M. Most apparent distortion: Full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19(1): 011006. doi: 10.1117/1.3267105.
    [27] PONOMARENKO N, JIN Lina, IEREMEIEV O, et al. Image database TID2013: Peculiarities, results and perspectives[J]. Signal Processing: Image Communication, 2015, 30: 57–77. doi: 10.1016/j.image.2014.10.009.
    [28] LIN Hanhe, HOSU V, and SAUPE D. KADID-10k: A large-scale artificially distorted IQA database[C]. Proceedings of 2019 11th International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 2019: 1–3. doi: 10.1109/QoMEX.2019.8743252.
    [29] GHADIYARAM D and BOVIK A C. Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE Transactions on Image Processing, 2016, 25(1): 372–387. doi: 10.1109/TIP.2015.2500021.
    [30] ZHAO Yongcan, ZHANG Yinghao, XIA Tianfeng, et al. No-reference image quality assessment based on multi-scale dynamic modulation and degradation information[J]. Displays, 2026, 91: 103207. doi: 10.1016/j.displa.2025.103207.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-30
  • 录用日期:  2026-01-30
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回