高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌套式超原子实现的无串扰频率-自旋复用多功能器件

张明 董朋 陶恩 杨琳 韩琦 何宇航 侯卫民 李康

张明, 董朋, 陶恩, 杨琳, 韩琦, 何宇航, 侯卫民, 李康. 嵌套式超原子实现的无串扰频率-自旋复用多功能器件[J]. 电子与信息学报. doi: 10.11999/JEIT251202
引用本文: 张明, 董朋, 陶恩, 杨琳, 韩琦, 何宇航, 侯卫民, 李康. 嵌套式超原子实现的无串扰频率-自旋复用多功能器件[J]. 电子与信息学报. doi: 10.11999/JEIT251202
ZHANG Ming, DONG Peng, TAO En, YANG Lin, HAN Qi, HE Yuhang, HOU Weimin, LI Kang. Crosstalk-Free Frequency-Spin Multiplexed Multifunctional Device Realized by Nested Meta-Atoms[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251202
Citation: ZHANG Ming, DONG Peng, TAO En, YANG Lin, HAN Qi, HE Yuhang, HOU Weimin, LI Kang. Crosstalk-Free Frequency-Spin Multiplexed Multifunctional Device Realized by Nested Meta-Atoms[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251202

嵌套式超原子实现的无串扰频率-自旋复用多功能器件

doi: 10.11999/JEIT251202 cstr: 32379.14.JEIT251202
基金项目: 中国国家重点研发计划(2022YFB4400400),国家自然科学基金(62105093, 62441401),国家重点实验室基础科学研究创新基金(IFN20230113),河北省重大科技支撑项目(24290201Z),河北省教育厅青年拔尖人才项目(BJK2023036)
详细信息
    作者简介:

    张明:男,副教授,博士,研究方向为电磁波调控,可重构超表面天线

    董朋:男,博士生,研究方向为多功能超表面器件

    陶恩:男,硕士生,研究方向为超表面器件智能设计

    杨琳:女,讲师,博士,研究方向为微波毫米波集成电路、无线通信射频前端芯片

    韩琦:男,讲师,博士,研究方向为光通信和太赫兹电磁调控

    何宇航:男,讲师,博士,研究方向为新型半导体材料的太赫兹光子学、电磁超材料的设计与调控

    侯卫民:男,教授,博士,研究方向为阵列信号处理、无线通信

    李康:男,副教授,博士,研究方向为毫米波功率器件和太赫兹器件

    通讯作者:

    侯卫民 jerry.ioa.bj@hotmail.com

  • 中图分类号: TN828.4; TN26

Crosstalk-Free Frequency-Spin Multiplexed Multifunctional Device Realized by Nested Meta-Atoms

Funds: National Key Research and Development Program of China (No. 2022YFB4400400), National Natural Science Foundation of China (No.62105093 and 62441401), National Key Laboratory of Basic Scientific Research for Innovation Fund (No. IFN20230113), the Major Science and Technology Support Project of Hebei Province (No.24290201Z), Science and Technology Project of Hebei Education Department (No. BJK2023036)
  • 摘要: 电磁波的多种物理自由度为实现超高信息容量的多功能超表面提供了广阔的维度复用空间。然而,现有的多维度复用超表面通常依赖复杂的多层设计或空间划分,导致器件制备成本较高,且信道间往往存在不可避免的串扰。为简化设计并提高信道隔离度,该研究提出了一种基于嵌套式双光谱超原子的无串扰频率-自旋复用单层超表面。通过精心设计,无串扰双光谱超原子的物理结构和电磁响应能够同时巧妙地表示为两个单光谱超原子的线性叠加,显著降低了复用设计的复杂度。作为概念验证,设计并制备了两款超表面器件,分别在由两个频率和两个自旋态组成的四个信道中实现了独立且无串扰的涡旋光束生成和全息成像功能。实验结果验证了多维复用超表面优异的信道隔离性能。这种方法为超表面在提升信息容量方面提供了一种简单、低成本且无串扰的解决方案,并在6G多通道无线通信和全息成像等领域展现出广阔的应用前景。
  • 图  1  提出的基于嵌套式双光谱超原子的频率-自旋复用单层超表面的工作原理示意图

    图  2  超原子的结构及其仿真结果。仿真通过CST Microwave Studio(CST)频域求解器完成,x、y方向均采用unit cell边界条件,z方向采用open边界条件,频率范围覆盖10~24 GHz。由于这些超原子是自旋无关的,所以这里不区分RCP和LCP入射

    图  3  无中间圆环时超原子的仿真结果

    图  4  单光谱超原子与双光谱超原子的仿真结果

    图  5  超表面MS1的仿真结果和实验测量结果

    图  6  超表面MS2的相位分布、计算结果、仿真结果和实验测量结果

    图  7  超表面样品及其实验测量装置

    表  1  八个OCSRR超原子和八个ICSRR超原子的结构参数

    参数12345678
    r1 (mm)3.53.33.33.53.53.33.33.5
    w1 (mm)0.60.40.20.30.60.40.20.3
    β1 (°)103060100103060100
    θ1 (°)000090909090
    r2 (mm)2.32.22.12.22.32.22.12.2
    w2 (mm)0.91.10.80.70.91.10.80.7
    β2 (°)8207010082070100
    θ2 (°)000090909090
    下载: 导出CSV
  • [1] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713.
    [2] KIM T T, KIM H, KENNEY M, et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507. doi: 10.1002/adom.201700507.
    [3] GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399.
    [4] CHEN H T, TAYLOR A J, and YU Nanfang. A review of metasurfaces: Physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401.
    [5] LI Junhao, LIU Wenwei, XU Haofei, et al. An RGB-achromatic aplanatic metalens[J]. Laser & Photonics Reviews, 2024, 18(4): 2300729. doi: 10.1002/lpor.202300729.
    [6] PENG Yuyan, ZHANG Jiawei, ZHOU Xiongtu, et al. Metalens in improving imaging quality: Advancements, challenges, and prospects for future display[J]. Laser & Photonics Reviews, 2024, 18(4): 2300731. doi: 10.1002/lpor.202300731.
    [7] YANG Hui, OU Kai, WAN Hengyi, et al. Metasurface-empowered optical cryptography[J]. Materials Today, 2023, 67: 424–445. doi: 10.1016/j.mattod.2023.06.003.
    [8] CHEN Chen, LIU Wenyuan, XIAO Likun, et al. Encrypted metasurfaces with inherent asymmetric-like digitized keys under decoupled near-field parameters[J]. Communications Physics, 2025, 8(1): 64. doi: 10.1038/s42005-025-01994-6.
    [9] YIN Yongyao, JIANG Qiang, WANG Hongbo, et al. Multi-dimensional multiplexed metasurface holography by inverse design[J]. Advanced Materials, 2024, 36(21): 2312303. doi: 10.1002/adma.202312303.
    [10] PARK C, JEON Y, and RHO J. 36-channel spin and wavelength co-multiplexed metasurface holography by phase-gradient inverse design[J]. Advanced Science, 2025, 12(28): 2504634. doi: 10.1002/advs.202504634.
    [11] ATALOGLOU V G, TARAVATI S, and ELEFTHERIADES G V. Metasurfaces: Physics and applications in wireless communications[J]. National Science Review, 2023, 10(8): nwad164. doi: 10.1093/nsr/nwad164.
    [12] CHEN Xiaoqing, ZHANG Lei, ZHENG Yining, et al. Integrated sensing and communication based on space-time-coding metasurfaces[J]. Nature Communications, 2025, 16(1): 1836. doi: 10.1038/s41467-025-57137-6.
    [13] IQBAL S, RAJABALIPANAH H, ZHANG Lei, et al. Frequency-multiplexed pure-phase microwave meta-holograms using bi-spectral 2-bit coding metasurfaces[J]. Nanophotonics, 2020, 9(3): 703–714. doi: 10.1515/nanoph-2019-0461.
    [14] XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919.
    [15] ZHANG Runzhe, GUO Yinghui, ZHANG Fei, et al. Dual-layer metasurface enhanced capacity of polarization multiplexing[J]. Laser & Photonics Reviews, 2024, 18(9): 2400126. doi: 10.1002/lpor.202400126.
    [16] LIU Yu, HUO Xingyuan, XIAO Yutong, et al. Metasurface-based non-orthogonal tri-channel polarization multiplexing for optical encryption[Invited][J]. Optical Materials Express, 2025, 15(3): 565–575. doi: 10.1364/OME.549304.
    [17] XU Hexiu, HU Guangwei, JIANG Menghua, et al. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface[J]. Advanced Materials Technologies, 2020, 5(1): 1900710. doi: 10.1002/admt.201900710.
    [18] WANG Zhenxu, FU Xinmin, LIANG Jian’gang, et al. Spin-decoupled metasurface by hybridizing curvature- and rotation-induced geometrical phases[J]. Laser & Photonics Reviews, 2024, 18(9): 2400184. doi: 10.1002/lpor.202400184.
    [19] WANG Yue, YAO Zhenyu, CUI Zijian, et al. Orbital angular momentum multiplexing holography based on multiple polarization channel metasurface[J]. Nanophotonics, 2023, 12(23): 4339–4349. doi: 10.1515/nanoph-2023-0550.
    [20] KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056.
    [21] CHEN Shuqi, LIU Wenwei, LI Zhancheng, et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32(3): 1805912. doi: 10.1002/adma.201805912.
    [22] ZHU Lei, WEI Jinxu, DONG Liang, et al. Four-channel meta-hologram enabled by a frequency-multiplexed mono-layered geometric phase metasurface[J]. Optics Express, 2024, 32(3): 4553–4563. doi: 10.1364/OE.513920.
    [23] GOU Yue, MA Huifeng, WU Liangwei, et al. Non-interleaved polarization-frequency multiplexing metasurface for multichannel holography[J]. Advanced Optical Materials, 2022, 10(22): 2201142. doi: 10.1002/adom.202201142.
    [24] HE Guoli, ZHENG Yaqin, ZHOU Changda, et al. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control[J]. Light: Science & Applications, 2024, 13(1): 98. doi: 10.1038/s41377-024-01420-6.
    [25] LIU Wanying, JIANG Xiaohan, XU Qaun, et al. All-dielectric terahertz metasurfaces for multi-dimensional multiplexing and demultiplexing[J]. Laser & Photonics Reviews, 2024, 18(8): 2301061. doi: 10.1002/lpor.202301061.
    [26] QU Kai, CHEN Ke, HU Qi, et al. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing[J]. Advanced Photonics Nexus, 2023, 2(1): 016010. doi: 10.1117/1.apn.2.1.016010.
    [27] XU Hexiu, HU Guangwei, KONG Xianghong, et al. Super-reflector enabled by non-interleaved spin-momentum-multiplexed metasurface[J]. Light: Science & Applications, 2023, 12(1): 78. doi: 10.1038/s41377-023-01118-1.
    [28] SUN Shi, GOU Yue, CUI Tiejun, et al. High-security nondeterministic encryption communication based on spin-space-frequency multiplexing metasurface[J]. PhotoniX, 2024, 5(1): 38. doi: 10.1186/s43074-024-00154-3.
    [29] ZHANG Fei, PU Mingbo, LUO Jun, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319–325. doi: 10.3969/j.issn.1003-501X.2017.03.006.
    [30] DING Guowen, CHEN Ke, LUO Xinyao, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi: 10.1103/PhysRevApplied.11.044043.
    [31] BAI Xudong, ZHANG Fuli, SUN Li, et al. Dynamic millimeter-wave OAM beam generation through programmable metasurface[J]. Nanophotonics, 2022, 11(7): 1389–1399. doi: 10.1515/nanoph-2021-0790.
    [32] CHONG Mingzhe, ZHOU Yiwen, ZHANG Zongkun, et al. Generation of polarization-multiplexed terahertz orbital angular momentum combs via all-silicon metasurfaces[J]. Light: Advanced Manufacturing, 2024, 5(3): 38. doi: 10.37188/lam.2024.038.
    [33] JIANG Yuying, LI Shuying, CHEN Xinlei, et al. Frequency-polarization multiplexing reflective metasurface for orbital angular momentum generation[J]. Applied Physics Letters, 2024, 124(22): 221701. doi: 10.1063/5.0207349.
    [34] XU Quan, SU Xiaoqiang, ZHANG Xueqian, et al. Mechanically reprogrammable pancharatnam-berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002. doi: 10.1117/1.AP.4.1.016002.
    [35] ZHAO Fengtao, DONG Peng, LI Kang, et al. Inverse design of terahertz metasurfaces for multi-channel holographic imaging based on the modified gradient descent method[J]. Optics Express, 2025, 33(8): 18005–18016. doi: 10.1364/OE.560396.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-15
  • 录用日期:  2025-12-15
  • 网络出版日期:  2025-12-19

目录

    /

    返回文章
    返回