高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

f-OFDM系统中的降复杂度主动干扰抵消算法

陈浩 闻建刚 邹园萍 华惊宇 盛彬

陈浩, 闻建刚, 邹园萍, 华惊宇, 盛彬. f-OFDM系统中的降复杂度主动干扰抵消算法[J]. 电子与信息学报. doi: 10.11999/JEIT251172
引用本文: 陈浩, 闻建刚, 邹园萍, 华惊宇, 盛彬. f-OFDM系统中的降复杂度主动干扰抵消算法[J]. 电子与信息学报. doi: 10.11999/JEIT251172
CHEN Hao, WEN Jiangang, ZOU Yuanping, HUA Jingyu, SHENG Bin. A Complexity-Reduced Active Interference Cancellation Algorithm in f-OFDM[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251172
Citation: CHEN Hao, WEN Jiangang, ZOU Yuanping, HUA Jingyu, SHENG Bin. A Complexity-Reduced Active Interference Cancellation Algorithm in f-OFDM[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251172

f-OFDM系统中的降复杂度主动干扰抵消算法

doi: 10.11999/JEIT251172 cstr: 32379.14.JEIT251172
基金项目: 国家自然科学基金(62271445)
详细信息
    作者简介:

    陈浩:男,副教授,博士,研究方向为无线通信技术中的多载波通信、信号处理、干扰抑制等

    闻建刚:男,讲师,博士,研究方向为多载波传输、信号处理、数字滤波器等

    邹园萍:女,副教授,博士,研究方向为宽带通信、移动通信、信号处理等

    华惊宇:男,教授,博士,研究方向为无线通信、无线定位、信号处理、数字滤波器等

    盛彬:男,教授,博士,研究方向为通信与信息系统、未来移动通信系统、无线传输技术研究等

    通讯作者:

    华惊宇 eehjy@163.com

  • 中图分类号: TN925

A Complexity-Reduced Active Interference Cancellation Algorithm in f-OFDM

Funds: The National Natural Science Foundation of China (62271445)
  • 摘要: 滤波正交频分复用(f-OFDM)使用子带滤波器对不同子带进行了有效隔离,实现了子带参数的灵活配置和异步传输,但代价是引入了一定量的固有干扰,尤其是由于子带的带外辐射(OOBE)而导致的子带间干扰(ITBI),造成了系统性能下降。因此抑制子带的OOBE对于降低ITBI,提升f-OFDM系统性能具有重要作用。该文根据f-OFDM的系统结构特点,构建了f-OFDM中的降复杂度主动干扰抵消(CRAIC)优化模型,并设计了对应的数域转换和类型转换方法,将CRAIC的优化模型转化为二阶锥规划问题进行了求解。该文还通过计算机仿真对所提CRAIC算法进行了验证,仿真结果显示,该文提出的CRAIC算法可以有效降低f-OFDM子带的OOBE,从而降低对相邻子带的ITBI,提高其性能。此外,该文还对消除子载波(CCs)个数、参与生成CCs的数据子载波个数,以及带外目标抑制频点个数等主要参数对CRAIC算法性能的影响进行了仿真分析,从功率谱密度、误码率等角度揭示了f-OFDM中CRAIC算法参数设置的内在特性。
  • 图  1  f-OFDM的上行发射机结构图

    图  2  SB1的PSD

    图  3  SB2的BER

    图  4  不同$ M $下SB1的PSD

    图  5  不同$ K $下SB1的PSD

    图  6  不同$ Q $下SB1的PSD

    图  7  典型参数下SB1的PSD

    图  8  典型参数下SB2的BER

    表  1  主要仿真参数

    参数SB1SB2
    SCS/kHz3015
    滤波器长度/样点5121024
    IFFT尺寸/样点10242048
    CP长度/样点1632
    子载波序号50~73149~196
    每帧符号数2814
    下载: 导出CSV
  • [1] ATAEEBOJD E, RASTI M, and LATVA-AHO M. Network selection and resource allocation for coexistence of eMBB and URLLC services in a 6G multi-band HetNet[J]. IEEE Transactions on Green Communications and Networking, 2025, 9(3): 1179–1194. doi: 10.1109/TGCN.2024.3481281.
    [2] 徐金雷, 赵俊湦, 卢华兵, 等. 面向6G的多维扩展通感一体化研究综述[J]. 电子与信息学报, 2024, 46(5): 1672–1683. doi: 10.11999/JEIT231045.

    XU Jinlei, ZHAO Junsheng, LU Huabing, et al. An overview on multi-dimensional expanded integrated sensing and communication for 6G[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1672–1683. doi: 10.11999/JEIT231045.
    [3] CHEN Zirui, ZHANG Zhaoyang, and YANG Zhaohui. Big AI models for 6G wireless networks: Opportunities, challenges, and research directions[J]. IEEE Wireless Communications, 2024, 31(5): 164–172. doi: 10.1109/MWC.015.2300404.
    [4] RAWAT B S, SRIVASTAVA A, SHRIVASTAVA V, et al. A comprehensive analysis of applications in internet of things networks in 5G and 6G[C]. 2024 2nd International Conference on Computer, Communication and Control (IC4), Indore, India, 2024: 1–6. doi: 10.1109/IC457434.2024.10486565.
    [5] 束锋, 张钧豪, 张旗, 等. 混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法[J]. 电子与信息学报, 2025, 47(4): 1026–1042. doi: 10.11999/JEIT240719.

    SHU Feng, ZHANG Junhao, ZHANG Qi, et al. Hybrid reconfigurable intelligent surface assisted sensing communication and computation for joint power and time allocation in vehicle ad-hoc network[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1026–1042. doi: 10.11999/JEIT240719.
    [6] GUO Fengxian, YU F R, ZHANG Heli, et al. Enabling massive IoT toward 6G: A comprehensive survey[J]. IEEE Internet of Things Journal, 2021, 8(15): 11891–11915. doi: 10.1109/JIOT.2021.3063686.
    [7] YUAN Yifei, WANG Sen, WU Yongpeng, et al. NOMA for next-generation massive IoT: Performance potential and technology directions[J]. IEEE Communications Magazine, 2021, 59(7): 115–121. doi: 10.1109/MCOM.001.2000997.
    [8] 曾嵘, 邵智敏. 零前缀OFDM中智能反射表面环境下干扰抑制算法研究[J]. 电子与信息学报, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.

    ZENG Rong and SHAO Zhimin. Research on interference suppression algorithm in reconfigurable intelligent surface environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.
    [9] EL HOUDA BOUDA N, ELAHMAR S A, and DAYOUB I. 5G MCM based NOMA in vehicular environments: A comparative analysis of F-OFDM and W-OFDM[C]. 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 2024: 1–5. doi: 10.1109/ICAEE61760.2024.10783226.
    [10] ABDOLI J, JIA Ming, and MA Jianglei. Filtered OFDM: A new waveform for future wireless systems[C]. 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 2015: 66–70. doi: 10.1109/SPAWC.2015.7227001.
    [11] 华惊宇, 杨乐, 闻建刚, 等. 通用滤波多载波系统原型滤波器的连续凸近似优化设计方法[J]. 电子与信息学报, 2025, 47(10): 3793–3803. doi: 10.11999/JEIT250278.

    HUA Jingyu, YANG Le, WEN Jian’gang, et al. A successive convex approximation optimization based prototype filter design method for universal filtered multi-carrier systems[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3793–3803. doi: 10.11999/JEIT250278.
    [12] ZHANG Xi, JIA Ming, CHEN Lei, et al. Filtered-OFDM - enabler for flexible waveform in the 5th generation cellular networks[C]. Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417854.
    [13] CHEN Hao, HUA Jingyu, LI Feng, et al. Interference analysis in the asynchronous f-OFDM systems[J]. IEEE Transactions on Communications, 2019, 67(5): 3580–3596. doi: 10.1109/TCOMM.2019.2898867.
    [14] CHENG Xudong, HE Yejun, GE Baohong, et al. A filtered OFDM using FIR filter based on window function method[C]. Proceedings of 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504065.
    [15] LIU Mingxin, XUE Wei, XU Yidong, et al. Design of filters based on generic function model for reducing out-of-band emissions of the F-OFDM systems[J]. AEU - International Journal of Electronics and Communications, 2021, 139: 153908. doi: 10.1016/j.aeue.2021.153908.
    [16] CHEN Hao, HUA Jingyu, WEN Jiangang, et al. Uplink interference analysis of F-OFDM systems under non-ideal synchronization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15500–15517. doi: 10.1109/TVT.2020.3041938.
    [17] VAN DE BEEK J and BERGGREN F. Out-of-band power suppression in OFDM[J]. IEEE Communications Letters, 2008, 12(9): 609–611. doi: 10.1109/LCOMM.2008.080587.
    [18] BRANDES S, COSOVIC I, and SCHNELL M. Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers[J]. IEEE Communications Letters, 2006, 10(6): 420–422. doi: 10.1109/LCOMM.2006.1638602.
    [19] ALIZADEH F and GOLDFARB D. Second-order cone programming[J]. Mathematical Programming, 2003, 95(1): 3–51. doi: 10.1007/s10107-002-0339-5.
    [20] LOBO M S, VANDENBERGHE L, BOYD S, et al. Applications of second-order cone programming[J]. Linear Algebra and its Applications, 1998, 284(1/3): 193–228. doi: 10.1016/S0024-3795(98)10032-0.
    [21] ZHANG Ruijin, WANG Zhaowei, LIU Xinwei, et al. IPRSOCP: A primal-dual interior-point relaxation algorithm for second-order cone programming[J]. Journal of the Operations Research Society of China, 2024: 1–31. doi: 10.1007/s40305-024-00538-z. (查阅网上资料,未找到对应的卷期页码信息,请确认).
    [22] FENG Zengzhe. A new $ O(\sqrt{n} L) $ iteration large-update primal-dual interior-point method for second-order cone programming[J]. Numerical Functional Analysis and Optimization, 2012, 33(4): 397–414. doi: 10.1080/01630563.2011.652269.
    [23] ZAIDI A A, BALDEMAIR R, MOLES-CASES V, et al. OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN[J]. IEEE Communications Standards Magazine, 2018, 2(2): 78–83. doi: 10.1109/MCOMSTD.2018.1700021.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-27
  • 录用日期:  2026-01-27
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回