高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ISAC-RIS系统下基于条件生成对抗网络的信道估计研究

刘钰 郑泽林 刘罡

刘钰, 郑泽林, 刘罡. ISAC-RIS系统下基于条件生成对抗网络的信道估计研究[J]. 电子与信息学报. doi: 10.11999/JEIT251168
引用本文: 刘钰, 郑泽林, 刘罡. ISAC-RIS系统下基于条件生成对抗网络的信道估计研究[J]. 电子与信息学报. doi: 10.11999/JEIT251168
LIU Yu, ZHENG Zelin, LIU Gang. Conditional Generative Adversarial Networks-based Channel Estimation for ISAC-RIS System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251168
Citation: LIU Yu, ZHENG Zelin, LIU Gang. Conditional Generative Adversarial Networks-based Channel Estimation for ISAC-RIS System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251168

ISAC-RIS系统下基于条件生成对抗网络的信道估计研究

doi: 10.11999/JEIT251168 cstr: 32379.14.JEIT251168
详细信息
    作者简介:

    刘钰:女,博士,讲师,研究方向为智能信号处理、通感一体化和干扰消除

    郑泽林:女,硕士生,研究方向为无线通信和信号处理

    刘罡:男,高级工程师,硕士生导师,研究方向为深度学习和移动通信

    通讯作者:

    刘罡 liugang@cwxu.edu.cn

  • 中图分类号: TN929.5

Conditional Generative Adversarial Networks-based Channel Estimation for ISAC-RIS System

  • 摘要: 通感一体化(Integrated Sensing and Communication, ISAC)技术作为未来无线通信发展的关键趋势,旨在通过频谱资源的高效利用,实现通信与感知功能的融合与协同。当智能反射表面(Reconfigurable Intelligent Surfaces, RIS)被引入ISAC系统后,可重构无线传播环境,从而显著提升通信质量及感知精度。然而,准确的信道估计对于保障可靠运行是至关重要的。尽管传统的深度学习方法在一定程度上能够应对信道估计问题,但在面对多用户复杂信道环境时,其泛化能力和估计精度仍存在不足。针对上述问题,本文对于RIS辅助多用户ISAC系统提出了一种基于条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)的两阶段信道估计方法。该方法通过调整RIS的开关状态,分阶段完成对直射信道与反射信道的估计,以提高信道估计的准确性和稳定性。通过生成网络与判别网络的对抗训练,不仅能够学习观测信号与真实信道之间的映射关系,还能根据判别网络的反馈来不断优化输出,从而有效提升训练效率与估计精度。仿真结果表明,与传统深度学习方法相比,所提基于CGAN的方案在信道估计性能上均表现出显著优势。该结果验证了CGAN方法在RIS辅助ISAC系统下信道估计的应用潜力,并为实现更精准和可靠的系统部署奠定了基础。
  • 图  1  RIS辅助的多用户ISAC系统模型

    图  2  导频传输协议

    图  3  数据增强参数敏感性实验

    图  5  所提出的基于CGAN的估计框架

    图  4  加权因子对NMSE的影响

    图  6  M = 6且L = 30时SAC信道估计的NMSE与SNR的关系

    图  7  在SNR = 0 dB和10 dB下且L = 30时,SAC信道估计的NMSE与M 的关系

    图  8  在SNR = 0 dB和10 dB下且M = 6时,通信信道估计的NMSE与L 的关系

    表  1  CGAN网络的具体参数

    模型 网络 大小 激活函数
    CGAN 生成器 输入层 $ 2M{P}^{{{\mathrm{S}}_{l}}} $ -
    FFL 100 LeakyReLU
    FFL 200 LeakyReLU
    输出层 $ 2{M}^{2} $ -
    判别器 输入层 $ 2{M}^{2} $ -
    FFL 100 LeakyReLU
    FFL 200 LeakyReLU
    输出层 1 -
    下载: 导出CSV

    表  2  两个阶段的子帧持续时间

    时隙持续时间 时隙个数 子帧持续时间 子帧个数 两个阶段的总子帧持续时间
    S1 TP=0.52 μs $ {P}^{{{\mathrm{S}}_{1}}} $=M+K=12 $ \begin{aligned}T_{\mathrm{F}}^{{\mathrm{S}}_{1}}&={T}_{\mathrm{P}}{P}^{{{\mathrm{S}}_{1}}}\\&=6.24 \;{\text{μs}}\end{aligned} $ $ {C}^{{{\mathrm{S}}_{1}}} $ $ \begin{aligned}{T}_{\mathrm{E}}&={C}^{{{\mathrm{S}}_{1}}}T_{\mathrm{F}}^{{\mathrm{S}}_{1}}+\left({C}^{{{\mathrm{S}}_{2}}}-{C}^{{{\mathrm{S}}_{1}}}\right)\\T_{\mathrm{F}}^{{\mathrm{S}}_{2}}&=99.84 \;{\text{μs}}\end{aligned} $
    $ {\mathrm{S}}_{2} $ $ {T}_{\mathrm{P}}=0.52 \;{\text{μs}} $ $ {P}^{{{\mathrm{S}}_{2}}}=\max \left\{M,K\right\}=6 $ $ \begin{aligned}T_{\mathrm{F}}^{{\mathrm{S}}_{2}}&={T}_{\mathrm{P}}{P}^{{{\mathrm{S}}_{2}}}\\&=3.12 \;{\text{μs}}\end{aligned} $ $ {C}^{{{\mathrm{S}}_{2}}}-{C}^{{{\mathrm{S}}_{1}}} $
    下载: 导出CSV

    表  3  SAC信道的路径损耗

    距离路径损耗指数路径损耗
    BS-目标-BS链路$ {d}_{\mathrm{S}}=150\mathrm{m} $$ {\beta }_{\mathrm{S}}=3 $$ {\xi }_{\mathrm{S}}={\xi }_{0}{\left({d}_{\mathrm{S}}/{d}_{0}\right)}^{-{{\beta }_{\mathrm{S}}}} $
    RIS-BS链路$ {d}_{\mathrm{IB}}=50\mathrm{m} $$ {\beta }_{\mathrm{IB}}=2.3 $$ {\xi }_{\mathrm{IB}}={\xi }_{0}{\left({d}_{\mathrm{IB}}/{d}_{0}\right)}^{-{{\beta }_{\mathrm{IB}}}} $
    $ {U}_{k} $-BS链路$ {d}_{{{U}_{k}}\mathrm{B}}=50\mathrm{m} $$ {\beta }_{{{U}_{k}}\mathrm{B}}=3.5 $$ {\xi }_{{{U}_{k}}\mathrm{B}}={\xi }_{0}{\left({d}_{{{U}_{k}}\mathrm{B}}/{d}_{0}\right)}^{-{{\beta }_{{{U}_{k}}\mathrm{B}}}} $
    BS-$ {D}_{j} $链路$ {d}_{\mathrm{B}{{D}_{j}}}=50\mathrm{m} $$ {\beta }_{\mathrm{B}{{D}_{j}}}=3.5 $$ {\xi }_{\mathrm{B}{{D}_{j}}}={\xi }_{0}{\left({d}_{\mathrm{B}{{D}_{j}}}/{d}_{0}\right)}^{-{{\beta }_{\mathrm{B}{{D}_{j}}}}} $
    $ {U}_{k} $-RIS链路$ {d}_{{{U}_{k}}\mathrm{I}}=2\mathrm{m} $$ {\beta }_{{{U}_{k}}\mathrm{I}}=2 $$ {\xi }_{{{U}_{k}}\mathrm{I}}={\xi }_{0}{\left({d}_{{{U}_{k}}\mathrm{I}}/{d}_{0}\right)}^{-{{\beta }_{{{U}_{k}}\mathrm{I}}}} $
    RIS-$ {D}_{j} $链路$ {d}_{\mathrm{I}{{D}_{j}}}=2\mathrm{m} $$ {\beta }_{\mathrm{I}{{D}_{j}}}=2 $$ {\xi }_{\mathrm{I}{{D}_{j}}}={\xi }_{0}{\left({d}_{\mathrm{I}{{D}_{j}}}/{d}_{0}\right)}^{-{{\beta }_{\mathrm{I}{{D}_{j}}}}} $
    下载: 导出CSV

    表  4  训练时间(s)

    训练时间ELMFNNCGAN
    ISAC BS$ {\mathrm{S}}_{1} $:$ \bf{A} $,$ {\bf{b}}_{k} $2.5410.31436.09
    $ {\mathrm{S}}_{2} $:$ {\bf{B}}_{k} $14.76485.26618.24
    下行$ {D}_{j} $$ {\mathrm{S}}_{1} $:$ {\bf{d}}_{j} $2.383.94493.52
    $ {\mathrm{S}}_{2} $:$ {\bf{D}}_{j} $9.4188.82522.06
    下载: 导出CSV
  • [1] BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220.
    [2] BOZORGI F, SEN P, BARRETO A N, et al. RF front-end challenges for joint communication and radar sensing[C]. Proceedings of 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376387.
    [3] HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156.
    [4] DONG Fuwang, LIU Fan, CUI Yuanhao, et al. Sensing as a service in 6G perceptive networks: A unified framework for ISAC resource allocation[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3522–3536. doi: 10.1109/TWC.2022.3219463.
    [5] ZHAO Bo, WANG Ming, XING Zeng, et al. Integrated sensing and communication aided dynamic resource allocation for random access in satellite terrestrial relay networks[J]. IEEE Communications Letters, 2023, 27(2): 661–665. doi: 10.1109/LCOMM.2022.3227594.
    [6] HE Zhenyao, XU Wei, SHEN Hong, et al. Full-duplex communication for ISAC: Joint beamforming and power optimization[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2920–2936. doi: 10.1109/JSAC.2023.3287540.
    [7] LE Q N, NGUYEN V D, DOBRE O A, et al. RIS-assisted full-duplex integrated sensing and communication[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1677–1681. doi: 10.1109/LWC.2023.3285391.
    [8] LI Hongyu, SHEN Shanpu, NERINI M, et al. Reconfigurable intelligent surfaces 2.0: Beyond diagonal phase shift matrices[J]. IEEE Communications Magazine, 2024, 62(3): 102–108. doi: 10.1109/MCOM.001.2300019.
    [9] CHU Jinjin, LU Zhiping, LIU Rang, et al. Joint beamforming and reflection design for secure RIS-ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4471–4475. doi: 10.1109/TVT.2023.3328192.
    [10] JIANG Chengjun, ZHANG Chensi, HUANG Chongwen, et al. RIS-assisted ISAC systems for robust secure transmission with imperfect sense estimation[J]. IEEE Transactions on Wireless Communications, 2025, 24(5): 3979–3992. doi: 10.1109/TWC.2025.3534439.
    [11] 陈真, 杜晓宇, 唐杰, 等. 基于深度强化学习的RIS辅助通感融合网络: 挑战与机遇[J]. 电子与信息学报, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.

    CHEN Zhen, DU Xiaoyu, TANG Jie, et al. DRL-based RIS-assisted ISAC network: Challenges and opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
    [12] LIU Yu, AL-NAHHAL I, DOBRE O A, et al. Deep-learning channel estimation for IRS-assisted integrated sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6181–6193. doi: 10.1109/TVT.2022.3231727.
    [13] LIU Yu, AL-NAHHAL I, DOBRE O A, et al. Extreme learning machine-based channel estimation in IRS-assisted multi-user ISAC system[J]. IEEE Transactions on Communications, 2023, 71(12): 6993–7007. doi: 10.1109/TCOMM.2023.3308150.
    [14] WANG Yang, XU Yin, ZHANG Cixiao, et al. Channel estimation for RIS-assisted mmWave systems via diffusion models[J]. IEEE Communications Letters, 2025, 30: 597–601. doi: 10.1109/LCOMM.2025.3645078.
    [15] WU Qingying, BAO Junqi, XU Hui, et al. A convolutional-transformer residual network for channel estimation in intelligent reflective surface aided MIMO systems[J]. Sensors, 2025, 25(19): 5959. doi: 10.3390/s25195959.
    [16] FAISAL A, AL-NAHHAL I, LEE K, et al. Conditional generative adversarial networks for channel estimation in RIS-assisted ISAC systems[J]. IEEE Transactions on Communications, 2025, 73(9): 7828–7841. doi: 10.1109/TCOMM.2025.3541047.
    [17] ELSAYED M, EL-BANNA A A A, DOBRE O A, et al. Hybrid-layers neural network architectures for modeling the self-interference in full-duplex systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6291–6307. doi: 10.1109/TVT.2022.3159535.
    [18] ELSAYED M, EL-BANNA A A A, DOBRE O A, et al. Full-duplex self-interference cancellation using dual-neurons neural networks[J]. IEEE Communications Letters, 2022, 26(3): 557–561. doi: 10.1109/LCOMM.2021.3136030.
    [19] ELSAYED M, EL-BANNA A A A, DOBRE O A, et al. Low complexity neural network structures for self-interference cancellation in full-duplex radio[J]. IEEE Communications Letters, 2021, 25(1): 181–185. doi: 10.1109/LCOMM.2020.3024063.
    [20] 3GPP. 3GPP TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation[S]. 2016. (查阅网上资料, 未找到本条文献出版信息, 请确认).
    [21] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509.
    [22] MA Jianpeng, ZHANG Shun, LI Hongyan, et al. Sparse bayesian learning for the time-varying massive MIMO channels: Acquisition and tracking[J]. IEEE Transactions on Communications, 2019, 67(3): 1925–1938. doi: 10.1109/TCOMM.2018.2855197.
    [23] SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
    [24] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [25] BISWAS S, MASOUROS C, and RATNARAJAH T. Performance analysis of large multiuser MIMO systems with space-constrained 2-D antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(5): 3492–3505. doi: 10.1109/TWC.2016.2522419.
    [26] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [27] FAISAL A, AL-NAHHAL I, DOBRE O A, et al. Deep reinforcement learning for optimizing RIS-assisted HD-FD wireless systems[J]. IEEE Communications Letters, 2021, 25(12): 3893–3897. doi: 10.1109/LCOMM.2021.3117929.
    [28] LIU Yu, AL-NAHHAL I, DOBRE O A, et al. Deep-learning channel estimation for IRS-assisted integrated sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6181–6193. doi: 10.1109/TVT.2022.3231727. (查阅网上资料,本条文献与第12条文献重复,请确认).
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-05
  • 修回日期:  2026-01-22
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-03

目录

    /

    返回文章
    返回