高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双视角频谱注意力融合的电池组多故障诊断算法

刘明俊 顾深宇 尹敬德 张逸凡 董哲康 纪晓悦

刘明俊, 顾深宇, 尹敬德, 张逸凡, 董哲康, 纪晓悦. 双视角频谱注意力融合的电池组多故障诊断算法[J]. 电子与信息学报. doi: 10.11999/JEIT251156
引用本文: 刘明俊, 顾深宇, 尹敬德, 张逸凡, 董哲康, 纪晓悦. 双视角频谱注意力融合的电池组多故障诊断算法[J]. 电子与信息学报. doi: 10.11999/JEIT251156
LIU Mingjun, GU Shenyu, YIN Jingde, ZHANG Yifan, DONG Zhekang, JI Xiaoyue. Battery Pack Multi-Fault Diagnosis Algorithm Based on Dual-Perspective Spectral Attention Fusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251156
Citation: LIU Mingjun, GU Shenyu, YIN Jingde, ZHANG Yifan, DONG Zhekang, JI Xiaoyue. Battery Pack Multi-Fault Diagnosis Algorithm Based on Dual-Perspective Spectral Attention Fusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251156

双视角频谱注意力融合的电池组多故障诊断算法

doi: 10.11999/JEIT251156 cstr: 32379.14.JEIT251156
基金项目: 博士后科学基金(2024T170463, 2024M751676),国家自然科学基金(62206062),浙江省优秀青年基金(LZYQ25F020005),长三角科技创新共同体联合攻关重点项目(2023CSJGG1300)
详细信息
    作者简介:

    刘明俊:男,博士生,研究方向为基于数据驱动的电池多故障诊断

    顾深宇:男,硕士生,研究方向为基于数据驱动的电池多故障诊断

    尹敬德:男,硕士生,研究方向为电池全生命周期管理

    张逸凡:男,硕士生,研究方向为基于数据驱动的电池健康状态估计

    董哲康:男,教授,研究方向为面向智慧能源的神经形态计算系统研究

    纪晓悦:女,助理研究员,研究方向为面向智慧能源的神经形态计算系统研究

    通讯作者:

    董哲康 englishp@126.com

  • 中图分类号: TN911; TP183

Battery Pack Multi-Fault Diagnosis Algorithm Based on Dual-Perspective Spectral Attention Fusion

Funds: China Postdoctoral Science Foundation (2024T170463, 2024M751676), The National Natural Science Foundation of China (62206062), Zhejiang Provincial Natural Science Foundation of China (LZYQ25F020005), Ministry of Science and Technology-Yangtze River Delta Science and Technology Innovation Program (2023CSJGG1300)
  • 摘要: 随着新能源汽车的快速发展,其使用规模不断扩大,电池组故障的概率和严重程度随之增加,迫切需要高效的故障诊断方法。近年来,尽管基于深度学习的电池故障诊断方法已取得显著进展,但现有研究在内短路(ISC)、传感器噪声、传感器漂移及荷电状态(SOC)不平衡故障的多故障下的工况的覆盖性以及故障间耦合关系的挖掘方面仍存在不足。针对既有挑战,该文提出一种双视角频谱注意力融合算法。该算法由两大核心模块组成:一是双视角分词模块,负责全链路捕捉电池组的时空信息;二是频谱注意力机制,负责非平稳特征处理与长期依赖挖掘。这种特征工程与频域分析的深度结合,有效增强了模型的故障诊断鲁棒性。该文提出的方法在联邦城市驾驶循环(FUDS)、城市测功机行驶工况(UDDS)和补充联邦测试程序(US06)3种典型工况下的诊断性能均显著优于现有主流算法,其平均精确率提升了10.98%,召回率提升了12.64%,F1分数提升了13.84%,准确率提升了13.45%。此外,该文设计并实施了系统的消融实验与鲁棒性分析,对比了各核心模块对模型整体性能的贡献机理,同时充分验证了所提方法在复杂噪声环境下的抗干扰能力与鲁棒性。该文所提出的双视角频谱注意力框架不仅提升了多故障诊断性能,也为复杂时空特征建模提供了新思路,为提升汽车安全性提供新的方案。
  • 图  1  实验平台

    图  2  FUDS工况下电池组特征曲线

    图  3  本文所模型的算法框架图

    图  4  频谱注意力模块

    图  5  模型在不同超参设置下的F1分数

    图  6  不同工况下的聚类图

    图  7  不同工况下各模型混淆矩阵对比

    表  1  实验设备参数

    设备名称 类型 参数
    高精度数字采集设备 KEYSIGHT 34980A 采样频率:10 Hz;
    测量精度:0.1%
    可控双向直流电源 ITECH IT6012-500-80 模式:恒压模式
    初始电压:4.2 V
    串联电池组 ITR18650-2600P 标称容量:2 000 mAh
    下载: 导出CSV

    表  2  电池组不同故障类型信息汇总

    故障名称类型介绍测试方法评判标准参数1
    正常电池处于正常工作状态
    ISC故障电池内部短路并发热并联不同阻值的电阻表征故障严重程度电阻接入时段标记为故障1 Ω/5 Ω/10 Ω
    传感器噪声故障传感器低频扰动叠加最大幅度为0.1 V的随机扰动施加区间均标记为噪声故障1 Hz
    传感器漂移故障传感器随机波动两端施加固定幅度的低频干扰电压施加区间均标记为漂移故障0.1 V
    SOC不平衡故障低容量电池引发更换低SOC的单体电池实现运行周期内均标记为故障0.2 V
    注:上标1表示所有故障类型参数,主要选自参考文献[21, 22, 3133]
    下载: 导出CSV

    表  3  FUDS, UDDS, US06工况下训练和测试数据

    名称数据量
    训练集测试集
    正常13707 × 32000 × 3
    ISC故障13707 × 32000 × 3
    传感器噪声故障13707 × 32000 × 3
    传感器漂移故障13707 × 32000 × 3
    SOC不平衡故障13707 × 32000 × 3
    总计68535 × 310000 × 3
    下载: 导出CSV

    1  双视角频谱注意力融合算法

     算法:双视角频谱注意力融合算法
     输入: 电池组归一化时序数据 Xenc (BatchSize, SeqLen,
     NumCells)
     输出: 预测类别概率 Output
     1: TL = DataEmbedding(Xenc)
     2: yt = FreqEncoder(TL)
     3: Xperm = Permute(Xenc [0, 2, 1])
     4: SL = PatchEmbedding(Xperm)
     5: ys = FreqEncoder (SL)
     6: y = Concatenate(yt, ys)
     7: Output = Projection(y)
     8: return Output
    下载: 导出CSV

    表  4  模型超参数设置

    超参数
    滑动窗长度300
    Batch_size大小64
    Epoch大小20
    d_model64
    d_feedforward128
    e_layers2
    学习率0.001
    优化器Adam
    下载: 导出CSV

    表  5  对比方法模型超参数设置

    模型 超参数设置
    文献[21] Batch_size:128;epochs:20;滑动窗长度:300;BatchNorm:True;Number:1000;Normal:True
    文献[25] 网络深度10层特征提取 (5×Conv, 5×Pool) + 2层分类(FC, Softmax);卷积核大小64, 32, 32, 16, 16(按顺序);
    池化核数量16, 64, 128, 128, 128(按顺序);池化策略 第1次: 16 (步幅),后续4次: 2(步幅)
    文献[26] 使用野马优化器寻找最优参数
    文献[27] Batch_size:16;Epoch:50;学习率:0.001;权重衰减:0.0001
    下载: 导出CSV

    表  6  不同工况下的对比实验(%)

    模型 FUDS UDDS US06
    精确率 召回率 F1分数 准确率 精确率 召回率 F1分数 准确率 精确率 召回率 F1分数 准确率
    文献[21] 92.672 92.422 91.672 91.412 91.223 90.133 90.062 90.123 93.412 93.482 92.862 92.452
    文献[25] 79.63 78.88 78.40 78.87 79.53 79.90 77.37 77.75 75.42 75.05 75.18 75.03
    文献[26] 90.083 84.89 83.86 84.89 89.76 85.17 84.07 85.05 89.01 83.44 82.10 83.44
    文献[27] 89.77 90.983 89.423 88.713 93.162 90.402 89.613 90.402 90.693 93.103 91.503 90.323
    本文模型 97.471 97.461 97.441 97.451 98.151 98.081 98.101 98.071 95.561 95.311 95.061 94.891
    注:上标1,2,3分别代表第1、第2和第3。
    下载: 导出CSV

    表  7  不同工况下的消融实验(%)

    模型FUDSUDDSUS06
    精确率召回率F1分数准确率精确率召回率F1分数准确率精确率召回率F1分数准确率
    时间+频谱注意力91.97390.18389.88389.99391.22390.13390.06390.12392.01390.7990.75390.793
    空间+频谱注意力81.6986.7782.3981.0583.4186.1082.5682.0785.9891.57388.2385.79
    时间+空间视角92.79292.35291.70291.49294.79293.90293.69293.67294.55294.29294.42294.292
    本文模型97.47197.46197.44197.45198.15198.08198.10198.07195.56195.31195.43194.891
    注:上标1,2,3分别代表第1、第2和第3。
    下载: 导出CSV

    表  8  噪声鲁棒性实验(%)

    模型SNR
    FUDSUDDSUS06
    –2 dB–4 dB–6 dB–8 dB–2 dB–4 dB–6 dB–8 dB–2 dB–4 dB–6 dB–8 dB
    文献[21]80.60274.11260.22252.43279.73275.50264.75248.92278.66268.89257.14248.322
    文献[25]43.3128.7720.8519.5641.1127.3322.0221.3342.2031.1122.9220.97
    文献[26]55.2637.0926.3919.9758.9740.4128.7419.6259.7438.8227.9418.05
    文献[27]57.16343.58343.54324.76359.83346.98346.24323.71362.76342.23340.96325.403
    本文模型85.02181.01171.05155.57181.86174.01172.16158.91189.41181.19166.48152.341
    注:上标1,2,3分别代表第1、第2和第3。
    下载: 导出CSV
  • [1] SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. Relative entropy based lithium-ion battery pack short circuit detection for electric vehicle[C]. The 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020: 5061–5067. doi: 10.1109/ECCE44975.2020.9235755.
    [2] ZHEN Chanzwen, CHEN Ziqiang, and HUANZ D. A novel sensor fault diagnosis method for lithium-ion battery system using hybrid system modeling[C]. The Condition Monitoring and Diagnosis (CMD), Perth, Australia, 2018: 1–5. doi: 10.1109/CMD.2018.8535711.
    [3] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950–959. doi: 10.1016/j.jclepro.2018.03.259.
    [4] YANG Ruixin, XIONG Rui, and SHEN Weixiang. Experimental study on external short circuit and overcharge of lithium-ion battery packs for electric vehicles[C]. The 4th International Conference on Green Energy and Applications (ICGEA), Singapore, Singapore, 2020: 1–6. doi: 10.1109/ICGEA49367.2020.241506.
    [5] SCHMID M, KNEIDINGER H G, and ENDISCH C. Data-driven fault diagnosis in battery systems through cross-cell monitoring[J]. IEEE Sensors Journal, 2021, 21(2): 1829–1837. doi: 10.1109/JSEN.2020.3017812.
    [6] LIU Hanxiao, LI Liwei, DUAN Bin, et al. Multi-fault detection and diagnosis method for battery packs based on statistical analysis[J]. Energy, 2024, 293: 130465. doi: 10.1016/j.energy.2024.130465.
    [7] ZHU Xiaoqing, WANG H, WANG Xue, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study[J]. Journal of Power Sources, 2020, 455: 227939. doi: 10.1016/j.jpowsour.2020.227939.
    [8] ZHENG Yuejiu, LU Yifan, GAO Wenkai, et al. Micro-short-circuit cell fault identification method for lithium-ion battery packs based on mutual information[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4373–4381. doi: 10.1109/TIE.2020.2984441.
    [9] LI Fang, MIN Yongjun, ZHANG Yong, et al. Towards general and efficient fault diagnosis: A novel framework for multi-fault cross-domain diagnosis of lithium-ion batteries in real-world scenarios[J]. Energy, 2025, 334: 137825. doi: 10.1016/j.energy.2025.137825.
    [10] HU Xiaosong, ZHANG Kai, LIU Kailong, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65–91. doi: 10.1109/MIE.2020.2964814.
    [11] MACHLEV R. EV battery fault diagnostics and prognostics using deep learning: Review, challenges & opportunities[J]. Journal of Energy Storage, 2024, 83: 110614. doi: 10.1016/j.est.2024.110614.
    [12] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.

    ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
    [13] ZHAO Yiwen, DENG Junjun, LIU Peng, et al. Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems[J]. Applied Energy, 2025, 377: 124632. doi: 10.1016/j.apenergy.2024.124632.
    [14] NAHA A, KHANDELWAL A, HARIHARAN K S, et al. On-board short-circuit detection of Li-ion batteries undergoing fixed charging profile as in smartphone applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8782–8791. doi: 10.1109/TIE.2018.2889623.
    [15] SEO M, GOH T, PARK M, et al. Detection method for soft internal short circuit in lithium-ion battery pack by extracting open circuit voltage of faulted cell[J]. Energies, 2018, 11(7): 1669. doi: 10.3390/en11071669.
    [16] XIONG Rui, SUN Wanzhou, YU Quanqing, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. doi: 10.1016/j.apenergy.2020.115855.
    [17] 高明裕, 蔡林辉, 孙长城, 等. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.

    GAO Mingyu, CAI Linhui, SUN Changcheng, et al. An internal short circuit fault detecting of battery pack based on spearman rank correlation combined with neural network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
    [18] LAO Zhenpeng, HE Deqiang, JIN Zhenzhen, et al. Few-shot fault diagnosis of turnout switch machine based on semi-supervised weighted prototypical network[J]. Knowledge-Based Systems, 2023, 274: 110634. doi: 10.1016/j.knosys.2023.110634.
    [19] JI Xiaoyue, CHEN Yi, WANG Junfan, et al. Time-frequency hybrid neuromorphic computing architecture development for battery state-of-health estimation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39941–39957. doi: 10.1109/JIOT.2024.3448350.
    [20] YU Quanqing, LI Jianming, CHEN Zeyu, et al. Multi-fault diagnosis of lithium-ion battery systems based on correlation coefficient and similarity approaches[J]. Frontiers in Energy Research, 2022, 10: 891637. doi: 10.3389/fenrg.2022.891637.
    [21] CAI Linhui, WANG Han, DONG Zhekang, et al. A multi-fault diagnostic method based on category-reinforced domain adaptation network for series-connected battery packs[J]. Journal of Energy Storage, 2023, 60: 106690. doi: 10.1016/j.est.2023.106690.
    [22] SHEN Xiaowei, LUN Shuxian, LI Ming. Multi-fault diagnosis of electric vehicle power battery based on double fault window location and fast classification[J]. Electronics, 2024, 13(3): 612. doi: 10.3390/electronics13030612.
    [23] ZHOU Juan, WU Zonghuan, ZHANG Shun, et al. A fault diagnosis method for power battery based on multiple model fusion[J]. Electronics, 2023, 12(12): 2724. doi: 10.3390/electronics12122724.
    [24] ZHAO Hongyu, ZHANG Chengzhong, XU Liang, et al. A deep neural network for multi-fault diagnosis of battery packs based on an incremental voltage measurement topology[J]. Energy, 2025, 316: 134590. doi: 10.1016/j.energy.2025.134590.
    [25] WANG Xin, MAO Dongxing, and LI Xiaodong. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173: 108518. doi: 10.1016/j.measurement.2020.108518.
    [26] YANG Guanghua, LIU Yuexiao, LI Na, et al. Intelligent fault diagnosis method of capacitor voltage transformer based on recurrent neural network[C]. The 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 2023: 412–416. doi: 10.1109/ICCEA58433.2023.10135307.
    [27] LIU Xuyang, CAI Hongchang, ZHOU Zihan, et al. Enhancing multi-type fault diagnosis in lithium-ion battery systems: Vision transformer-based transfer learning approach[J]. Journal of Power Sources, 2024, 624: 235610. doi: 10.1016/j.jpowsour.2024.235610.
    [28] YUAN Haitao, LI Changlong, ZHOU Mingyang, et al. Multi-fault diagnosis for lithium-ion batteries under diverse operating conditions based on multi-source domain generalization[J]. Energy, 2025, 335: 138230. doi: 10.1016/j.energy.2025.138230.
    [29] MA Mina, LI Xiaoyu, GAO Wei, et al. Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA[J]. Applied Energy, 2022, 324: 119678. doi: 10.1016/j.apenergy.2022.119678.
    [30] DONG Zhekang, GU Shenyu, ZHOU Shiqi, et al. Periodic segmentation transformer-based internal short circuit detection method for battery packs[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3655–3666. doi: 10.1109/TTE.2024.3444453.
    [31] WANG Jiayang, ZHANG Xinhao, HAI Yifeng, et al. MDGN: Circuit design of memristor-based denoising autoencoder and gated recurrent unit network for lithium-ion battery state of charge estimation[J]. IET Renewable Power Generation, 2024, 18(3): 372–383. doi: 10.1049/rpg2.12809.
    [32] KANG Yongzhe, DUAN Bin, ZHOU Zhongkai, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132–144. doi: 10.1016/j.jpowsour.2019.01.058.
    [33] GRABOW J, KLINK J, ORAZOV N, et al. Triggering and characterisation of realistic internal short circuits in lithium-ion pouch cells—a new approach using precise needle penetration[J]. Batteries, 2023, 9(10): 496. doi: 10.3390/batteries9100496.
    [34] 毛琳, 张海新, 何志伟, 等. 一种电池相平面结合Conformer-BiGRU网络的电池内短路故障诊断方法[J]. 电子与信息学报, 2025, 47(10): 4031–4043. doi: 10.11999/JEIT250313.

    MAO Lin, ZHANG Haixin, HE Zhiwei, et al. A battery internal-short-circuit fault diagnosis method combining battery phase plane with Conformer-BiGRU network[J]. Journal of Electronics & Information Technology, 2025, 47(10): 4031–4043. doi: 10.11999/JEIT250313.
    [35] DONG Zhekang, YANG Mengjie, WANG Junfan, et al. PFFN: A parallel feature fusion network for remaining useful life early prediction of lithium-ion battery[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 2696–2706. doi: 10.1109/TTE.2024.3427334.
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-01
  • 修回日期:  2025-12-18
  • 录用日期:  2025-12-22
  • 网络出版日期:  2026-01-03

目录

    /

    返回文章
    返回