高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二阶多智能体系统的弹性平均一致性算法及其应用

方崇荣 还约辉 郑文喆 包贤晨 李政

方崇荣, 还约辉, 郑文喆, 包贤晨, 李政. 二阶多智能体系统的弹性平均一致性算法及其应用[J]. 电子与信息学报. doi: 10.11999/JEIT251155
引用本文: 方崇荣, 还约辉, 郑文喆, 包贤晨, 李政. 二阶多智能体系统的弹性平均一致性算法及其应用[J]. 电子与信息学报. doi: 10.11999/JEIT251155
FANG Chongrong, HUAN Yuehui, ZHENG Wenzhe, BAO Xianchen, LI Zheng. Resilient Average Consensus for Second-Order Multi-Agent Systems: Algorithms and Application[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251155
Citation: FANG Chongrong, HUAN Yuehui, ZHENG Wenzhe, BAO Xianchen, LI Zheng. Resilient Average Consensus for Second-Order Multi-Agent Systems: Algorithms and Application[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251155

二阶多智能体系统的弹性平均一致性算法及其应用

doi: 10.11999/JEIT251155 cstr: 32379.14.JEIT251155
基金项目: 浙江省“尖兵领雁+X”研发攻关计划(2024SJCZX0003, 2024SJCZX0004)
详细信息
    作者简介:

    方崇荣:男,副教授,研究方向为信息物理系统安全

    还约辉:男,总经理,研究方向为工业控制系统安全

    郑文喆:男,硕士,研究方向为多智能体系统安全

    包贤晨:男,技术经理,研究方向为工业信息安全

    李政:男,博士在读,研究方向为信息物理系统攻击检测

    通讯作者:

    还约辉 huanyuehui@guolisec.com

  • 中图分类号: TP278

Resilient Average Consensus for Second-Order Multi-Agent Systems: Algorithms and Application

Funds: Pioneer Leading Goose+X R&D Program of Zhejiang (2024SJCZX0003, 2024SJCZX0004)
  • 摘要: 多智能体系统是实现协同协作的重要途径,而弹性一致性则是其安全支撑技术之一。该文针对二阶多智能体系统,研究在存在异常行为节点(包括恶意攻击和意外故障)情况下保证系统协同性能的弹性平均一致性问题。该问题面临双重挑战:如何实现分布式异常检测,以及如何通过一维加速度输入精确补偿二维状态误差。为解决该问题,该文首先推导了二阶平均一致性实现的充分条件。基于此,通过引入两跳通信信息设计了分布式检测机制,并提出能够精确补偿有限控制输入误差的方案。针对输入、速度、位置维度可能遭受的持续攻击,进一步提出具有容错机制的扩展算法。理论证明表明,所提算法能使节点在存在异常节点情况下渐近实现二阶平均一致性。最后,通过大量数值仿真和实验验证了所提方法的有效性。
  • 图  1  弹性平均一致性方法的整体设计框架

    图  2  典型拓扑结构

    图  3  FIDC算法下的弹性一致性性能表现

    图  4  IADC算法下的弹性一致性性能表现

    图  5  多机器人平台架构[23]

    图  6  故障存在时多机器人系统节点运动轨迹

    图  7  攻击存在时多机器人系统节点运动轨迹

    1  FIDC

    1:初始化:设置补偿周期$ {T}_{c} $,并交换各节点的邻居数量$ |{\mathcal{N}}_{j}| $信息
     2:$ \rm{f}\rm{o}\rm{r} $$ k=0\colon {\mathrm{Max}}\_ {\mathrm{time}} $ $ \rm{d}\rm{o} $
     3:  $ \rm{f}\rm{o}\rm{r} $ $ i\in {\mathcal{N}}_{j} $ $ \rm{d}\rm{o} $
     4:   节点$ j $基于公式计算节点$ i $引起的误差
     5:   $ \rm{i}\rm{f} $ $ \varepsilon _{i}^{j}(k)\neq 0 $
     6:    通过公式计算补偿序列$ {\varepsilon }_{j}(k+l|k),l=1,2,\cdots ,{T}_{c} $
     7:  $ \rm{e}\rm{n}\rm{d} $ $ \rm{i}\rm{f} $
     8: $ \rm{e}\rm{n}\rm{d} $$ \boldsymbol{f}\boldsymbol{o}\boldsymbol{r} $
     9: 通过公式和公式(6)分别计算$ {\varepsilon }_{j}(k+1) $和控制输入并施加
     10: 更新$ {v}_{j}(k+2) $和$ {\tilde{r}}_{j}(k+2) $状态值
     11:$ \rm{e}\rm{n}\rm{d} $ $ \rm{f}\rm{o}\rm{r} $
    下载: 导出CSV

    2  IADC

     1:初始化:设置补偿周期$ {T}_{c} $,并交换各节点的邻居数量$ |{\mathcal{N}}_{j}| $信息
     2:$ \rm{f}\rm{o}\rm{r} $$ k=0\colon {\mathrm{Max}}\_ {\mathrm{time}} $ $ \rm{d}\rm{o} $
     3: $ \rm{f}\rm{o}\rm{r} $ $ i\in {\mathcal{N}}_{j} $ $ \rm{d}\rm{o} $
     4:  通过公式计算$ i $在控制输入、速度和位置上的误差。
     5:  $ \rm{i}\rm{f} $ $ {\omega }_{i}(k)\neq 0 $或$ {\delta }_{i}(k)\neq 0 $或$ \varepsilon _{i}^{j}(k)\neq 0 $
     6:   根据公式和获取补偿序列。
     7:  $ \rm{e}\rm{n}\rm{d} $ $ \rm{i}\rm{f} $
     8:  $ \rm{i}\rm{f} $ $ \varepsilon _{i}^{j}(k)\geq {\alpha }_{j}\rho _{j}^{k} $或$ {\omega }_{i}(k)\geq {\alpha }_{j}\rho _{j}^{k} $或$ {\delta }_{i}(k)\geq {\alpha }_{j}\rho _{j}^{k} $
     9:   节点$ j $隔离节点$ i $,通过公式计算补偿序列。
     10:  $ \rm{e}\rm{n}\rm{d} $ $ \rm{i}\rm{f} $
     11: $ \rm{e}\rm{n}\rm{d} $$ \rm{f}\rm{o}\rm{r} $
     12: 通过公式计算$ {\varepsilon }_{j}(k+1) $,基于公式计算控制输入并施加
     13: 更新$ {v}_{j}(k+2) $和$ {\tilde{r}}_{j}(k+2) $状态值
     14:$ \rm{e}\rm{n}\rm{d} $ $ \rm{f}\rm{o}\rm{r} $
    下载: 导出CSV
  • [1] OLFATI-SABER R, FAX J A, and MURRAY R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215–233. doi: 10.1109/JPROC.2006.887293.
    [2] WANG Xin, HE Jianping, CHENG Peng, et al. Differentially private maximum consensus: Design, analysis and impossibility result[J]. IEEE Transactions on Network Science and Engineering, 2019, 6(4): 928–939. doi: 10.1109/TNSE.2018.2879795.
    [3] LIU Mengxiang, ZHAO Chengcheng, DENG Ruilong, et al. False data injection attacks and the distributed countermeasure in DC microgrids[J]. IEEE Transactions on Control of Network Systems, 2022, 9(4): 1962–1974. doi: 10.1109/TCNS.2022.3181483.
    [4] WU Yanfang, GUO Peng, WANG Ying, et al. Attack-defense game modeling framework from a vulnerability perspective to protect critical infrastructure systems[J]. Reliability Engineering & System Safety, 2025, 256: 110740. doi: 10.1016/j.ress.2024.110740.
    [5] KIECKHAFER R M and AZADMANESH M H. Low cost approximate agreement in partially connected networks[J]. Journal of Computing and Information, 1993, 3(2). (查阅网上资料, 未找到页码信息, 请补充).
    [6] KIECKHAFER R M and AZADMANESH M H. Reaching approximate agreement with mixed-mode faults[J]. IEEE Transactions on Parallel and Distributed Systems, 1994, 5(1): 53–63. doi: 10.1109/71.262588.
    [7] LEBLANC H J, ZHANG Haotian, KOUTSOUKOS X, et al. Resilient asymptotic consensus in robust networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(4): 766–781. doi: 10.1109/JSAC.2013.130413.
    [8] DIBAJI S M and ISHII H. Consensus of second-order multi-agent systems in the presence of locally bounded faults[J]. Systems & Control Letters, 2015, 79: 23–29. doi: 10.1016/j.sysconle.2015.02.005.
    [9] SUNDARAM S and HADJICOSTIS C N. Distributed function calculation via linear iterative strategies in the presence of malicious agents[J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1495–1508. doi: 10.1109/TAC.2010.2088690.
    [10] WU Hanyu, LIU Qingshan, and PARK J H. Observer-based secure consensus for multiagent systems under multimode DoS attacks with application to power system[J]. IEEE Transactions on Cybernetics, 2025, 55(3): 1032–1044. doi: 10.1109/TCYB.2025.3528200.
    [11] PASQUALETTI F, BICCHI A, and BULLO F. Consensus computation in unreliable networks: A system theoretic approach[J]. IEEE Transactions on Automatic Control, 2012, 57(1): 90–104. doi: 10.1109/TAC.2011.2158130.
    [12] SHAMES I, TEIXEIRA A M H, SANDBERG H, et al. Distributed fault detection for interconnected second-order systems[J]. Automatica, 2011, 47(12): 2757–2764. doi: 10.1016/j.automatica.2011.09.011.
    [13] GUO Meng, DIMAROGONAS D V, and JOHANSSON K H. Distributed real-time fault detection and isolation for cooperative multi-agent systems[C]. 2012 American Control Conference, Montreal, Canada, 2012: 5270–5275. doi: 10.1109/ACC.2012.6315178.
    [14] FANG Chongrong, ZHENG Wenzhe, HE Zhiyu, et al. Towards resilient average consensus in multi-agent systems: A detection and compensation approach[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(2): 182–196. doi: 10.1631/FITEE.2300467.
    [15] YUAN Liwei and ISHII H. Resilient average consensus with adversaries via distributed detection and recovery[J]. IEEE Transactions on Automatic Control, 2025, 70(1): 415–430. doi: 10.1109/TAC.2024.3426387.
    [16] LIU Zeqiang, LIU Zhiwei, HE Dingxin, et al. Dynamic resilient consensus of second-order multiagent networks with a time-varying malicious agent set[J]. IEEE Transactions on Automatic Control, 2025, 70(5): 3308–3315. doi: 10.1109/TAC.2024.3507672.
    [17] XIAO Lin, BOYD S, and KIM S J. Distributed average consensus with least-mean-square deviation[J]. Journal of Parallel and Distributed Computing, 2007, 67(1): 33–46. doi: 10.1016/j.jpdc.2006.08.010.
    [18] ZHENG Wenzhe, FANG Chongrong, HE Jianping, et al. Resilient average consensus of second-order multi-agent systems[C]. 2022 American Control Conference, Atlanta, USA, 2022: 1466–1471. doi: 10.23919/ACC53348.2022.9867735.
    [19] CAO Yongcan and REN Wei. Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction[J]. International Journal of Control, 2010, 83(3): 506–515. doi: 10.1080/00207170903214338.
    [20] HE Jianping, CHENG Peng, SHI Ling, et al. SATS: Secure average-consensus-based time synchronization in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2013, 61(24): 6387–6400. doi: 10.1109/TSP.2013.2286102.
    [21] ZHAO Chengcheng, HE Jianping, and CHEN Jiming. Resilient consensus with mobile detectors against malicious attacks[J]. IEEE Transactions on Signal and Information Processing over Networks, 2018, 4(1): 60–69. doi: 10.1109/TSIPN.2017.2742859.
    [22] E-ISAC. Analysis of the Cyber Attack on the Ukrainian Power Grid[M]. Washington, USA: E-ISAC, 2016: 3. (查阅网上资料, 未能确认作者信息, 请确认).
    [23] DING Xuda, WANG Han, LI Hongbo, et al. Robopheus: A virtual-physical interactive mobile robotic testbed[J]. arXiv: 2103.04391, 2021. doi: 10.48550/arXiv.2103.04391.(查阅网上资料,未能确认文献类型,请确认).
    [24] LI Yushan, HE Jianping, CHEN Cailian, et al. Intelligent physical attack against mobile robots with obstacle-avoidance[J]. IEEE Transactions on Robotics, 2023, 39(1): 253–272. doi: 10.1109/TRO.2022.3201394.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-31
  • 录用日期:  2025-12-31
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回