高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向短包通信的分组稀疏矢量码

张雪婉 张迪 古博

张雪婉, 张迪, 古博. 面向短包通信的分组稀疏矢量码[J]. 电子与信息学报. doi: 10.11999/JEIT251143
引用本文: 张雪婉, 张迪, 古博. 面向短包通信的分组稀疏矢量码[J]. 电子与信息学报. doi: 10.11999/JEIT251143
ZHANG Xuewan, ZHANG Di, GU Bo. Group-based Sparse Vector Codes for Short-Packet Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251143
Citation: ZHANG Xuewan, ZHANG Di, GU Bo. Group-based Sparse Vector Codes for Short-Packet Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251143

面向短包通信的分组稀疏矢量码

doi: 10.11999/JEIT251143 cstr: 32379.14.JEIT251143
基金项目: 国家自然科学基金青年科学基金(62501317),河南省优秀青年科学基金(242300421169),河南省自然科学基金青年项目(252300420981)
详细信息
    作者简介:

    张雪婉:男,讲师,硕士生导师,研究方向为多址接入技术、短包高可靠低时延通信

    张迪:男,副教授,博士生导师,研究方向为智能网络通信、网络通信安全

    古博:男,教授,博士生导师,研究方向为移动群智感知网络、无线网络通信

    通讯作者:

    张迪 zhangd263@mail.sysu.edu.cn

  • 中图分类号: TN929.5

Group-based Sparse Vector Codes for Short-Packet Communications

Funds: Youth Program of the National Natural Science Foundation of China (62501317), Outstanding Youth Science Foundation Project of Henan Province (242300421169), Youth Program of Natural Science Foundation of Henan Province (252300420981)
  • 摘要: 稀疏矢量码(SVC)技术因其实施简单、传输可靠等优点在短包高可靠低时延通信方面获得了广泛关注。构造短稀疏矢量并使用小尺寸随机扩频码本是确保其系统性能的关键。为此,该文提出一种基于分组的SVC (GSVC)方案。该方案摒弃了经典的索引调制全局稀疏变换方式,通过对索引比特分组划分,以分组稀疏变换的形式在同一预定稀疏矢量上逐次选取出各分组的非零位置,从而实现位置资源对所有分组的共享,达到压缩稀疏矢量的目的。因此,所提GSVC方案具有高的位置资源利用率,能够构造出比常规全局选取方式要短的稀疏矢量来传输既定信息比特。与现有多种SVC改进方案的仿真对比结果表明,所提方案在低阶调制模式下具有更优的误块率性能。
  • 图  1  传统稀疏矢量构造方式

    图  2  所提GSVC中分选稀疏矢量构造方案(N=6, $ {N}_{\rm e}=2 $, V=3)

    图  3  MMP与OAMP算法的BLER对比

    图  4  调制阶数M不同时,BLER性能对比(K=64, $ {N}_{\rm e}=2 $, V=2, $ {b}_{s}=5 $)

    图  5  给定不同$ {b}_{s} $时,BLER性能对比(K=64, $ {N}_{\rm e}=2 $, V=2, M=2)

    图  6  子载波个数K不同时,BLER性能对比($ {N}_{\rm e}=2 $, V=2, $ {b}_{s}=4 $)

    图  7  分选组数V不同时,BLER性能对比(K=64, $ {N}_{\rm e}=2 $, $ {b}_{s}=5 $, M=2)

    图  8  所提GSVC与Polar码的BLER对比

    1  GSVC的译码过程

     (1) 初始化$ {\boldsymbol{r}}_{{\mathrm{end}}}=+\mathrm{\infty } $, $ {\boldsymbol{r}}_{0}=\boldsymbol{y} $, $ \varepsilon $, D, $ {l}_{\max } $, $ l=1 $;
     (2) 利用MMP获得合成矢量的位置估计$ \hat{\varOmega } $和元素估计$ \hat{s} $:
     (3) while ($ \varepsilon < {\boldsymbol{r}}_{{\mathrm{end}}} $&&$ l\leq {l}_{\max } $)
     (4)  令t = l - 1;
     (5)  for n = 1 : N
     (6)   $ {d}_{n}=\mathrm{mod}\left(t\right)+1 $; $ t=\left\lfloor t/D\right\rfloor $; // 式(19)
     (7)  end for
     (8)  for n = 1 : N
     (9)   根据式(20)、式(21)、式(22)计算$ \tilde{\pi }_{{d}_{n}}^{l} $, $ \hat{s}_{n}^{l} $, $ \boldsymbol{r}_{n}^{l} $;
     (10) end for
     (11) if ($ {\boldsymbol{r}}_{{\mathrm{end}}} > \left|\left|\boldsymbol{r}_{N}^{l}\right|\right| $)
     (12) $ {\boldsymbol{r}}_{{\mathrm{end}}}=\left|\left|\boldsymbol{r}_{N}^{l}\right|\right| $; $ \hat{\varOmega }=\left\{\tilde{\pi }_{{d}_{n}}^{l}\right\}_{n=1}^{N} $; $ \hat{s}=\left\{\hat{s}_{n}^{l}\right\}_{n=1}^{N} $;
     (13) end if
     (14) $ l=l+1 $;
     (15) end while
     (16) 利用$ \hat{s} $完成解层映射并输出比特流:
     (17) 依据步骤1对$ \hat{s} $中N个元素实施分组;
     (18) for t = 1 : T
     (19)  根据式(23)获取Val;
     (20) end for
     (21) 获取最小Val对应下的分组,依据步骤3输出比特流。
    下载: 导出CSV
  • [1] SONG Lulu, ZHANG Di, JIA Shaobo, et al. STAR-RIS-aided NOMA for secured xURLLC[J]. IEEE Transactions on Vehicular Technology, 2025, 74(8): 13249–13254. doi: 10.1109/TVT.2025.3556542.
    [2] POURKABIRIAN A, KORDAFSHARI M S, JINDAL A, et al. A vision of 6G URLLC: Physical-layer technologies and enablers[J]. IEEE Communications Standards Magazine, 2024, 8(2): 20–27. doi: 10.1109/MCOMSTD.0003.2300018.
    [3] 蔡穗华, 王义文, 白宝明, 等. 面向高可靠低时延通信的信道编码技术研究综述[J]. 电子学报, 2025, 53(2): 629–644. doi: 10.12263/DZXB.20240137.

    CAI Suihua, WANG Yiwen, BAI Baoming, et al. Channel coding techniques for ultra-reliable and low-latency communication[J]. Acta Electronica Sinica, 2025, 53(2): 629–644. doi: 10.12263/DZXB.20240137.
    [4] 戴景鑫, 尹航, 王玉环, 等. 面向短包通信的PAC码低复杂度序贯译码算法[J]. 电子与信息学报, 2025, 47(12): 1–12. doi: 10.11999/JEIT250533.

    DAI Jingxin, YIN Hang, WANG Yuhuan, et al. Low complexity sequential decoding algorithm of PAC code for short packet communication[J]. Journal of Electronics & Information Technology, 2025, 47(12): 1–12. doi: 10.11999/JEIT250533.
    [5] BILBAO I, FANARI L, IRADIER E, et al. Sparse vector coding for short-packet transmission on industrial communications: Reference architecture and design challenges[J]. IEEE Open Journal of the Industrial Electronics Society, 2023, 4: 1–13. doi: 10.1109/OJIES.2022.3230142.
    [6] SHIM B. Sparse vector coding for ultra-reliable and low-latency communications[M]. DUONG T Q, KHOSRAVIRAD S R, SHE Changyang, et al. Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice: Advances in 5G and Beyond. Wiley, 2023: 169–213. doi: 10.1002/9781119818366.ch6.
    [7] ZHANG Xuewan and ZHANG Dalong. Sparse superimposed coding based on index redefinition[J]. IEEE Communications Letters, 2023, 27(5): 1467–1471. doi: 10.1109/LCOMM.2023.3257314.
    [8] SABAPATHY S, MARUTHU S, and JAYAKODY D N K. Multi-user sparse vector coding for eXtreme ultra-reliable low-latency communication in beyond 5G[J]. IEEE Access, 2025, 13: 56780–56792. doi: 10.1109/ACCESS.2025.3551398.
    [9] LIU Huiqi, MOW H M, and LIANG Shansuo. Generalization and construction of single-section sparse regression codes[C]. ICC 2024 - IEEE International Conference on Communications, Denver, USA, 2024: 611–616. doi: 10.1109/ICC51166.2024.10622751.
    [10] ZHANG Yanfeng, ZHU Xu, XU Zhixiang, et al. Sparse superimposed codes for vehicular communications with low-resolution ADCs[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 277–281. doi: 10.1109/ICCCWorkshops62562.2024.10693757.
    [11] HSIEH K and VENKATARAMANAN R. Modulated sparse superposition codes for the complex AWGN channel[J]. IEEE Transactions on Information Theory, 2021, 67(7): 4385–4404. doi: 10.1109/TIT.2021.3081368.
    [12] KIM W, BANDARI S K, and SHIM B. Enhanced sparse vector coding for ultra-reliable and low latency communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5698–5702. doi: 10.1109/TVT.2020.2982943.
    [13] SABAPATHY S, MARUTHU S, and JAYAKODY D N K. Rate-splitting sparse vector code for next-generation URLLC systems[J]. IEEE Wireless Communications Letters, 2024, 13(7): 1993–1997. doi: 10.1109/LWC.2024.3400452.
    [14] ZHANG Xuewan, ZHANG Di, SHIM B, et al. Sparse superimposed coding for short-packet URLLC[J]. IEEE Internet of Things Journal, 2022, 9(7): 5275–5289. doi: 10.1109/JIOT.2021.3108161.
    [15] ZHANG Xuewan, CHEN Hongyang, ZHANG Di, et al. Uniquely decomposable constellation group-based sparse vector coding for short packet communications[J]. China Communications, 2023, 20(5): 119–134. doi: 10.23919/JCC.fa.2022-0253.202305.
    [16] ARSLAN E, DOGUKAN A T, and BASAR E. Sparse-encoded codebook index modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9126–9130. doi: 10.1109/TVT.2020.2996023.
    [17] HAN D, LEE B, JANG M, et al. Block orthogonal sparse superposition codes for L3 communications: Low error rate, low latency, and low transmission power[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(4): 1183–1199. doi: 10.1109/JSAC.2025.3531569.
    [18] YANG Linjie and FAN Pingzhi. Multiple-mode sparse superposed code with low block error rate for short packet URLLC[J]. IEEE Communications Letters, 2024, 28(2): 248–252. doi: 10.1109/LCOMM.2023.3348570.
    [19] ZHANG Xuewan, LIU Pengxue, and XU Xiumei. One-hot vector-based sparse vector transmission for short packet URLLC[J]. IEEE Transactions on Vehicular Technology, accepted, September 2025. doi: 10.1109/TVT.2025.3608466.
    [20] ZHANG Xuewan, CHEN Yadi, and GUO Jingjing. A pairwise grouping-based sparse mapping for sparse vector transmission[J]. IEEE Communications Letters, 2024, 28(12): 2844–2848. doi: 10.1109/LCOMM.2024.3481003.
    [21] HUI Ming, ZHANG Xuewan, and GUO Jingjing. Generalized multi-user sparse superposition transmission for massive machine-type communications[J]. Journal of Communications and Networks, 2024, 26(4): 433–444. doi: 10.23919/JCN.2024.000029.
    [22] LI Jun, DANG Shuping, HUANG Yu, et al. Composite multiple-mode orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3748–3761. doi: 10.1109/TWC.2022.3220752.
    [23] RUSH C, HSIEH K, and VENKATARAMANAN R. Capacity-achieving spatially coupled sparse superposition codes with AMP decoding[J]. IEEE Transactions on Information Theory, 2021, 67(7): 4446–4484. doi: 10.1109/TIT.2021.3083733.
    [24] LIU Lei, LIANG Shansuo, and PING Li. On capacity optimality of OAMP: Beyond IID sensing matrices and Gaussian signaling[J]. IEEE Transactions on Communications, 2024, 72(5): 2519–2535. doi: 10.1109/TCOMM.2024.3354201.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-01
  • 修回日期:  2026-01-03
  • 录用日期:  2026-01-04
  • 网络出版日期:  2026-01-12

目录

    /

    返回文章
    返回