高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂环境下无人机航拍小目标检测算法

刘杰 刘书豪 田明 崔志刚

刘杰, 刘书豪, 田明, 崔志刚. 复杂环境下无人机航拍小目标检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT251126
引用本文: 刘杰, 刘书豪, 田明, 崔志刚. 复杂环境下无人机航拍小目标检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT251126
LIU Jie, LIU Shuhao, TIAN Ming, CUI Zhigang. Small Object Detection Algorithm for UAV Aerial Images in Complex Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251126
Citation: LIU Jie, LIU Shuhao, TIAN Ming, CUI Zhigang. Small Object Detection Algorithm for UAV Aerial Images in Complex Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251126

复杂环境下无人机航拍小目标检测算法

doi: 10.11999/JEIT251126 cstr: 32379.14.JEIT251126
基金项目: 黑龙江省自然科学基金(NO.LH2023E086),黑龙江省交通运输厅科技项目(NO.HJK2024B002)资助
详细信息
    作者简介:

    刘杰:女,博士,副教授,研究方向为人工智能与图像处理、大数据模型及预测

    刘书豪:男,硕士生,研究方向为深度学习与目标检测

    田明:男,本科,工程师,研究方向为大数据建模与数据预测

    崔志刚:男,硕士,高级工程师,研究方向为智慧公路与道路养护

    通讯作者:

    刘杰 liujie@hrbust.edu.cn

  • 中图分类号: TP391.4

Small Object Detection Algorithm for UAV Aerial Images in Complex Environments

Funds: Supported by Natural Science Foundation of Heilongjiang Province (No. LH2023E086), Science and Technology Project of Heilongjiang Provincial Communications Department (No. HJK2024B002)
  • 摘要: 无人机航拍图像因其分辨率高、视角广、部署灵活的特点,在智能交通领域得到广泛应用。针对无人机航拍图像中目标尺度变化大、背景复杂、小目标密集等问题,提出一种面向复杂环境的无人机航拍目标检测算法HAR-DETR。首先,对骨干网络的最后两层BasicBlock重新设计,添加聚合感知注意力以提取目标的多尺度特征,增大了感受野和对细粒度目标的感知效果;其次,设计高分辨率检测分支,提高模型对小目标检测的敏感度。最后,提出基于特征金字塔的重校准特征融合网络(RFF-FPN),将小目标的浅层边界特征与深层语义特征结合,更好地捕捉多尺度目标的语义信息,同时简化颈部网络的结构。实验结果表明,在VisDrone2019数据集上,HAR-DETR算法的mAP50相比原RT-DETR模型提升3.8%,mAP50-95提升3.2%。在RSOD数据集上展现出良好的泛化性能,在小目标检测任务中表现优异,具有较强的实用价值和推广前景。
  • 图  1  RT-DETR网络结构

    图  2  HAR-DETR网络结构

    图  3  Aggregated Attention网络结构图

    图  4  高分辨率检测分支(虚线)与颈部网络结构

    图  5  SBA与RAU结构图

    图  6  改进前后热力图比较

    图  7  RT-DETR(左)与HAR-DETR(右)的检测效果对比图

    表  1  对比实验结果

    算法名称PMGFLOPsP/%R/%mAP50/%mAP50-95/%FPS
    YOLOv5m25.264.052.141.241.625.0124.5
    YOLOv5l53.1134.754.542.943.826.783.0
    YOLOv8m25.878.753.141.241.925.4114.5
    YOLOv8l43.5164.955.042.743.826.686.2
    YOLOv10m16.763.454.240.942.126.2110.3
    YOLOv10l25.7126.455.342.544.327.682.6
    YOLOv12m20.167.253.742.043.426.3112.9
    YOLOv12l26.388.656.143.044.927.885.1
    Gold-YOLO-s21.546.0--34.319.8102.0
    Efficient DETR32.0159.049.536.136.722.019.7
    Deformable DETR41.2173.1--43.127.116.4
    RT-DETR-R1820.057.062.246.647.428.945.8
    RT-DETR-R3431.188.863.145.748.629.825.4
    文献[15]-52.4--49.430.240.6
    文献[16]14.649.664.348.850.831.754.6
    HAR-DETR22.884.464.549.051.232.137.8
    下载: 导出CSV

    表  2  消融实验结果

    模型P/%R/%mAP50/%mAP50-95/%
    Baseline62.246.647.428.9
    +AA62.046.247.729.3
    +HRDB61.946.848.830.6
    +RFF-FPN61.746.347.529.0
    +RFF-FPN+HRDB62.448.149.731.3
    +AA+ HRDB62.748.650.331.7
    +AA+HRDB+RFF-FPN64.549.051.232.1
    下载: 导出CSV

    表  3  Visdrone2019测试集实验结果

    模型P/%R/%mAP50/%mAP50-95/%
    Baseline55.739.537.921.9
    HAR-DETR58.340.940.424.0
    下载: 导出CSV

    表  4  RSOD数据集实验结果

    模型P/%R/%mAP50/%mAP50-95/%
    Baseline95.395.697.471.4
    HAR-DETR95.296.197.573.6
    下载: 导出CSV
  • [1] 张志豪, 杜丽霞, 侯越, 等. 跨层注意力交互下的多特征交叉无人机图像检测[J]. 光学 精密工程, 2024, 32(24): 3616–3631. doi: 10.37188/OPE.20243224.3616.

    ZHANG Zhihao, DU Lixia, HOU Yue, et al. Multi-feature cross UAV image detection algorithm under cross-layer attentional interaction[J]. Optics and Precision Engineering, 2024, 32(24): 3616–3631. doi: 10.37188/OPE.20243224.3616.
    [2] 孙叶美, 桑学婷, 张艳, 等. 基于超图计算的高效传递多尺度特征小目标检测算法[J]. 光电工程, 2025, 52(5): 250061. doi: 10.12086/oee.2025.250061.

    SUN Yemei, SANG Xueting, ZHANG Yan, et al. Hypergraph computed efficient transmission multi-scale feature small target detection algorithm[J]. Opto-Electronic Engineering, 2025, 52(5): 250061. doi: 10.12086/oee.2025.250061.
    [3] KONG Yaning, SHANG Xiangfeng, and JIA Shijie. Drone-DETR: Efficient small object detection for remote sensing image using enhanced RT-DETR model[J]. Sensors, 2024, 24(17): 5496. doi: 10.3390/s24175496.
    [4] 李凯璇, 刘晓锋, 陈强, 等. YOLOv8-GAIS: 一种改进的无人机航拍目标检测算法[J]. 光电工程, 2025, 52(4): 240295. doi: 10.12086/oee.2025.240295.

    LI Kaixuan, LIU Xiaofeng, CHEN Qiang, et al. YOLOv8-GAIS: Improved object detection algorithm for UAV aerial photography[J]. Opto-Electronic Engineering, 2025, 52(4): 240295. doi: 10.12086/oee.2025.240295.
    [5] HUANG Ji and LI Tianrui. Small object detection by DETR via information augmentation and adaptive feature fusion[C]. Proceedings of 2024 ACM ICMR Workshop on Multimodal Video Retrieval, New York, USA, 2024: 39–44. doi: 10.1145/3664524.3675362.
    [6] 张明明, 郑光迪, 万鸣, 等. 一种基于YOLOv5的改进航拍图像识别算法[J/OL]. 激光技术, 1–20. https://link.cnki.net/urlid/51.1125.TN.20250918.1341.012, 2025.

    ZHANG Mingming, ZHENG Guangdi, WAN Ming, et al. An improved aerial image recognition algorithm based on YOLOv5[J/OL]. Laser Technology, 1–20. https://link.cnki.net/urlid/51.1125.TN.20250918.1341.012, 2025.
    [7] 杨智能, 钟小勇, 李华耀, 等. 改进YOLOv8n的航拍小目标检测算法[J]. 电光与控制, 2025, 32(7): 27–32,78. doi: 10.3969/j.issn.1671-637X.2025.07.005.

    YANG Zhineng, ZHONG Xiaoyong, LI Huayao, et al. Aerial small target detection based on improved YOLOv8n algorithm[J]. Electronics Optics & Control, 2025, 32(7): 27–32,78. doi: 10.3969/j.issn.1671-637X.2025.07.005.
    [8] LU Yanfeng, GAO Jingwen, YU Qian, et al. A cross-scale and illumination invariance-based model for robust object detection in traffic surveillance scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6989–6999. doi: 10.1109/TITS.2023.3264573.
    [9] WU Dangxuan, LI Xiuhong, LI Boyuan, et al. A lightweight two-level nested FPN network for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 6011505. doi: 10.1109/LGRS.2024.3412244.
    [10] SHI Jianyu, JIA Yuan, ZHOU Gang, et al. Small target insect detection based on improved YOLOv8n[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 2025: 1–5. doi: 10.1109/ICASSP49660.2025.10890801.
    [11] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [12] 戴铮, 刘骁佳, 潘泉. 基于改进DETR算法的焊缝缺陷检测方法研究[J]. 电子与信息学报, 2025, 47(7): 2298–2307. doi: 10.11999/JEIT241009.

    DAI Zheng, LIU Xiaojia, and PAN Quan. Research on weld defect detection method based on improved DETR[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2298–2307. doi: 10.11999/JEIT241009.
    [13] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. 9th International Conference on Learning Representations, 2021. (查阅网上资料, 未找到对应的出版地信息, 请确认补充).
    [14] 沈靖夫, 张元良, 刘飞跃, 等. 基于深度学习的水面无人清理船目标检测综述[J]. 价值工程, 2024, 43(13): 157–160. doi: 10.3969/j.issn.1006-4311.2024.13.044.

    SHEN Jingfu, ZHANG Yuanliang, LIU Feiyue, et al. A review of target detection for unmanned surface cleaning ships based on deep learning[J]. Value Engineering, 2024, 43(13): 157–160. doi: 10.3969/j.issn.1006-4311.2024.13.044.
    [15] 胡佳乐, 周敏, 申飞. 面向无人机小目标的RTDETR改进检测算法[J]. 计算机工程与应用, 2024, 60(20): 198–206. doi: 10.3778/j.issn.1002-8331.2404-0114.

    HU Jiale, ZHOU Min, and SHEN Fei. Improved detection algorithm of RTDETR for UAV small target[J]. Computer Engineering and Applications, 2024, 60(20): 198–206. doi: 10.3778/j.issn.1002-8331.2404-0114.
    [16] 程鑫淼, 张雪松, 曹冰洁, 等. 改进RT-DETR的小目标检测方法研究[J]. 计算机工程与应用, 2025, 61(15): 144–155. doi: 10.3778/j.issn.1002-8331.2501-0293.

    CHENG Xinmiao, ZHANG Xuesong, CAO Bingjie, et al. Research on small object detection method of improved RT-DETR[J]. Computer Engineering and Applications, 2025, 61(15): 144–155. doi: 10.3778/j.issn.1002-8331.2501-0293.
    [17] ZHAO Yian, LV Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 16965–16974. doi: 10.1109/CVPR52733.2024.01605.
    [18] 庞玉东, 李志星, 刘伟杰, 等. 基于改进实时检测Transformer的塔机上俯视场景小目标检测模型[J]. 计算机应用, 2024, 44(12): 3922–3929. doi: 10.11772/j.issn.1001-9081.2023121796.

    PANG Yudong, LI Zhixing, LIU Weijie, et al. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection transformer[J]. Journal of Computer Applications, 2024, 44(12): 3922–3929. doi: 10.11772/j.issn.1001-9081.2023121796.
    [19] LIU Ruoyuan, ZHANG Xizheng, JIN Shengwei, et al. A small target detection model based on an improved RT-DETR[C]. 2024 4th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE), Chengdu, China, 2024: 434–438. doi: 10.1109/IARCE64300.2024.00086.
    [20] 王满利, 窦泽亚, 蔡明哲, 等. 基于高分辨扩展金字塔的场景文本检测[J]. 电子与信息学报, 2025, 47(7): 2334–2346. doi: 10.11999/JEIT241017.

    WANG Manli, DOU Zeya, CAI Mingzhe, et al. Scene text detection based on high resolution extended pyramid[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2334–2346. doi: 10.11999/JEIT241017.
    [21] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.

    SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
    [22] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626. doi: 10.1109/ICCV.2017.74.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-22
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-11

目录

    /

    返回文章
    返回