Low-Complexity Joint Estimation Algorithm for Carrier Frequency Offset and Sampling Frequency Offset in 5G-NTN Low Earth Orbit Satellite Communications
-
摘要: 在5G非地面网络(5G-NTN)低轨卫星通信系统中,多普勒效应会带来载波频偏(CFO)、采样频偏(SFO)以及子载波间频偏(ISFO)。研究发现,当正交频分复用(OFDM)信号子载波数量较大且采用高阶调制时,ISFO会成为制约接收机性能的关键因素。现有算法多针对CFO和SFO的估计及补偿展开研究,极少考虑ISFO的影响。另外,采用传统的最大似然估计算法对CFO和SFO进行联合估计时,需要进行一维或二维网格搜索,计算复杂度非常高。针对上述问题,本文利用5G-NTN中导频信号的分布特点,提出了两种低复杂度的CFO和SFO联合估计算法。首先,利用5G-NTN中解调参考信号的互相关向量在主瓣内的单峰特性,设计了一种基于二分搜索的联合估计算法,可以实现快速收敛。然后,设计了基于观测量自相关的L&R估计算法,推导了待估参数的近似闭式解。典型实例分析和仿真表明,两种算法性能接近采用一维或二维搜索的最大似然估计算法,且所提二分搜索估计算法运算量仅为二维搜索最大似然估计算法的4%、一维搜索最大似然估计算法的44%。Abstract:
Objective The Doppler effect presents a major impairment in Low Earth Orbit (LEO) satellite communications within 5G Non-Terrestrial Networks (5G-NTN), introducing Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO), and Inter-Subcarrier Frequency Offset (ISFO) across subcarriers. Although existing estimation algorithms focus mainly on CFO and SFO, the effect of ISFO remains inadequately addressed. ISFO becomes particularly detrimental to receiver performance when OFDM systems utilize a large number of subcarriers and high-order modulation. Moreover, under joint CFO and SFO conditions, conventional maximum likelihood estimation (MLE) methods often involve one- or two-dimensional grid searches, incurring high computational complexity. To mitigate these issues, this paper proposes two novel joint estimation algorithms for CFO and SFO. Methods This paper analyzes the influence of non-ideal factors at the transmitter, receiver, and channel, such as local oscillator offset, sampling frequency offset in Digital-to-Analog and Analog-to-Digital converters, and Doppler effect. A mathematical model for the received OFDM signal is developed, and the mechanism through which SFO and ISFO distort the phase of frequency-domain subcarriers is derived. Leveraging the pilot structure of 5G-NTN, two joint CFO and SFO estimation algorithms are introduced: (1) Algorithm 1 exploits the sequence correlation between the received frequency-domain DMRS signal vectors, denoted as and . After phase pre-compensation is applied to , the normalized cross-correlation vector is computed. An objective function is constructed based on this vector, and its unimodal property within the main lobe is utilized to efficiently estimate the parameters via a bisection search. (2) Algorithm 2 treats the estimation parameters as analogous to carrier frequency offsets in single-carrier systems and adopts an L&R-based autocorrelation approach to derive approximate closed-form expressions. Results and Discussions A computational complexity analysis is performed comparing the proposed algorithms with conventional one-dimensional (1D-ML) and two-dimensional (2D-ML) grid-search MLE methods. Numerical results demonstrate that Algorithm 1 achieves substantial complexity reduction. Specifically, the number of complex multiplications—the dominant computational cost—is only 4% of that of the 2D-ML method, 8% of that of Algorithm 2, and 44% of that of the 1D-ML method. Although Algorithm 2 is computationally heavier, it provides a closed-form estimation expression. The performance of each algorithm is evaluated in terms of the mean square error (MSE) of the estimated parameters. Simulations show that for a subcarrier number of 3072, the 1D-ML algorithm slightly outperforms others at SNRs below 5 dB. However, since robust modulation schemes (e.g., BPSK, QPSK) typically used at low SNRs can tolerate larger offsets, the medium-to-high SNR regime is of greater practical interest, where all four algorithms exhibit comparable estimation performance. Conclusions This paper addresses the impact of Doppler effect in 5G-NTN LEO satellite communications by analyzing the mechanism and influence of ISFO and proposing two joint estimation algorithms for CFO and SFO. First, a mathematical model of the received signal is established considering non-ideal factors such as CFO, SFO, and ISFO. It is derived that the combined effect of SFO and ISFO on OFDM signals is equivalent to their linear superposition, effectively expanding the range of the equivalent SFO. Second, the objective function is defined using the cross-correlation vector of two DMRS sequences. Leveraging its unimodal characteristic within the main lobe, a binary search algorithm is employed to achieve rapid convergence. Subsequently, the parameter to be estimated—determined by SFO and ISFO—is analogized to the carrier frequency offset in single-carrier systems. An approximate closed-form solution for parameter estimation is derived using the L&R algorithm. Finally, complexity analysis and performance simulations are conducted. The results demonstrate that the proposed algorithms not only significantly reduce computational complexity but also exhibit excellent estimation performance. The outcomes of this research can be applied to the development of 5G-NTN LEO satellite payloads and terminal products, demonstrating promising potential for widespread application. -
1 二分搜索估计算法
输入:$ {\boldsymbol{Y}}_{M1} $,$ {\boldsymbol{Y}}_{M2} $,$ \rho $,$ {k}_{0} $,$ d $,$ I $,$ {\alpha }_{\max } $,$ N{}_{\text{fi}} $ 1:if $ \rho dI{\alpha }_{\max } > 2text{π} $ then 2: 确定粗搜索次数:$ {N}_{\text{co}}=2\times \left\lceil \rho dI{\alpha }_{\max }/(2text{π} )\right\rceil $,并设置
$ \boldsymbol{Z}={[Z(1),Z(2),\cdots ,Z({{N}_{\text{co}}})]}^{\mathrm{T}} $;3: for $ l=1\cdots {N}_{\text{co}} $ do 4: 获取粗搜索点:$ \beta =2text{π} (l-({N}_{\text{co}}+1)/2)/(\rho dI) $; 5: 根据公式(10)~公式(12)依次计算$ {\mathbf{\tilde{\boldsymbol{Y}}}}_{\text{M2}} $、$ \boldsymbol{R}(\beta ) $和$ f(\beta ) $,
并将$ f(\beta ) $存入$ Z(l) $中;6: end 7: 搜索得到$ \boldsymbol{Z} $中最大值的序号$ {l}_{\max } $,计算粗估计值
$ {\overline{\alpha }}_{mid}=2text{π} ({l}_{\max }-({N}_{\text{co}}+1)/2)/(\rho dI) $;8:else 9: 粗估计值$ {\overline{\alpha }}_{mid}=0 $; 10:end 11:确定精搜索的初始基准点$ \gamma ={\overline{\alpha }}_{mid} $及步进$ \Delta =text{π} /(\rho dI) $; 12:for $ n=1\cdots N{}_{\text{fi}} $ do 13: if $ f(\gamma +\Delta ) > f(\gamma -\Delta ) $ then 14: 调整基准点和步进:$ \gamma =\gamma +\Delta $,$ \Delta =\Delta /2 $; 15: else 16: 调整基准点和步进:$ \gamma =\gamma -\Delta $,$ \Delta =\Delta /2 $; 17: end 18:end 19:计算多普勒参数估计值:$ \overline{\alpha }=\gamma $,
$ {\overline{\varepsilon }}_{0}=\arctan (\displaystyle\sum\nolimits_{i=0}^{I-1}{R}_{i}(\overline{\alpha }))/\rho $;输出:$ \overline{\alpha } $,$ {\overline{\varepsilon }}_{0} $ 表 1 算法复杂度比较
算法名称 复数乘 实数乘 复数加 本文算法1 73728 36864 36864 本文算法2 893568 4608 768 2D-ML算法 1658880 0 829440 1D-ML算法 165888 0 82944 表 2 仿真系统参数
参数名称 参数值 子载波数量($ K $) 768(64RB)、 3072 (256RB)导频子载波间隔($ d $) 2 DMRS信号序号 M1=2,M2=6 SFO($ \eta $) 30 ppm CFO($ {\varepsilon }_{0} $) 0.02 ISFO($ \Delta \varepsilon $) 24 ppm 信道类型 AWGN 编码调制方式 MCS10(BPSK、码率308/ 1024 )、
MCS25(16QSK、码率873/1024 )天线配置 SISO -
[1] 孙耀华, 彭木根, 赵亚飞, 等. 低轨卫星互联网: 从星地融合迈向通导遥一体化[J]. 北京邮电大学学报, 2024, 47(6): 69–98. doi: 10.13190/j.jbupt.2024-100.SUN Yaohua, PENG Mugen, ZHAO Yafei, et al. Low earth orbit satellite network: From satellite-terrestrial convergence to the integration of communication, navigation and sensing[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(6): 69–98. doi: 10.13190/j.jbupt.2024-100. [2] 周颖, 施倩, 李瑞瑜, 等. 天地一体化网络发展及关键技术概述[J]. 空间电子技术, 2025, 22(1): 28–39. doi: 10.3969/j.issn.1674-7135.2025.01.003.ZHOU Ying, SHI Qian, LI Ruiyu, et al. The overview of development and key technologies of the space-ground integrated network[J]. Space Electronic Technology, 2025, 22(1): 28–39. doi: 10.3969/j.issn.1674-7135.2025.01.003. [3] 宋艳军, 孙晨华, 谢文轩, 等. 面向低轨卫星的NTN随机接入技术[J]. 天地一体化信息网络, 2024, 5(4): 17–24. doi: 10.11959/j.issn.2096-8930.2024035.SONG Yanjun, SUN Chenhua, XIE Wenxuan, et al. Random access technology of NTN network for low orbit satellite[J]. Space-Integrated-Ground Information Networks, 2024, 5(4): 17–24. doi: 10.11959/j.issn.2096-8930.2024035. [4] 苏昭阳, 刘留, 艾渤, 等. 面向低轨卫星的星地信道模型综述[J]. 电子与信息学报, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941.SU Zhaoyang, LIU Liu, AI Bo, et al. Survey of satellite-ground channel models for low earth orbit satellites[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941. [5] SPETH M, FECHTEL S A, FOCK G, et al. Optimum receiver design for wireless broad-band systems using OFDM. I[J]. IEEE Transactions on Communications, 1999, 47(11): 1668–1677. doi: 10.1109/26.803501. [6] 李炯卉, 熊蔚明, 姚辰. 卫星数传OFDM信号的多普勒效应影响分析[J]. 系统工程与电子技术, 2016, 38(12): 2849–2854. doi: 10.3969/j.issn.1001-506X.2016.12.25.LI Jionghui, XIONG Weiming, and YAO Chen. Analysis of Doppler effects on satellite data transmission of OFDM signals[J]. Systems Engineering and Electronics, 2016, 38(12): 2849–2854. doi: 10.3969/j.issn.1001-506X.2016.12.25. [7] 李喆, 林威洪, 邓伟, 等. Starlink下行信号的多普勒效应影响分析[J]. 通信学报, 2024, 45(3): 131–141. doi: 10.11959/j.issn.1000-436x.2024029.LI Zhe, LIN Weihong, DENG Wei, et al. Analysis of the influence of Doppler effect on Starlink downlink signals[J]. Journal on Communications, 2024, 45(3): 131–141. doi: 10.11959/j.issn.1000-436x.2024029. [8] 顾博文, 李林, 代传金, 等. 基于低轨卫星OFDM信号侦测的隐蔽定位算法研究[J]. 系统工程与电子技术, 2024, 46(12): 3957–3964. doi: 10.12305/j.issn.1001-506X.2024.12.03.GU Bowen, LI Lin, DAI Chuanjin, et al. Research on concealed positioning algorithm based on LEO satellites OFDM signal investigation and detection[J]. Systems Engineering and Electronics, 2024, 46(12): 3957–3964. doi: 10.12305/j.issn.1001-506X.2024.12.03. [9] NGUYEN-LE H, LE-NGOC T, and KO C C. RLS-based joint estimation and tracking of channel response, sampling, and carrier frequency offsets for OFDM[J]. IEEE Transactions on Broadcasting, 2009, 55(1): 84–94. doi: 10.1109/TBC.2008.2012361. [10] NGUYEN-LE H, LE-NGOC T, and KO C C. Joint channel estimation and synchronization for MIMO-OFDM in the presence of carrier and sampling frequency offsets[J]. IEEE Transactions on Vehicular Technology, 2009, 58(6): 3075–3081. doi: 10.1109/TVT.2008.2006178. [11] KIM Y H and LEE J H. Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems[J]. IEEE Transactions on Broadcasting, 2011, 57(2): 277–283. doi: 10.1109/TBC.2011.2122890. [12] YUAN Jin and TORLAK M. Joint CFO and SFO estimator for OFDM receiver using common reference frequency[J]. IEEE Transactions on Broadcasting, 2016, 62(1): 141–149. doi: 10.1109/TBC.2015.2492470. [13] WANG Xu and HU Bo. A low-complexity ML estimator for carrier and sampling frequency offsets in OFDM systems[J]. IEEE Communications Letters, 2014, 18(3): 503–506. doi: 10.1109/LCOMM.2013.123113.132444. [14] PÄRLIN K, RIIHONEN T, LE NIR V, et al. Estimating and tracking wireless channels under carrier and sampling frequency offsets[J]. IEEE Transactions on Signal Processing, 2023, 71: 1053–1066. doi: 10.1109/TSP.2023.3259140. [15] 3GPP. TR 38.811 Study on new radio (NR) to support non-terrestrial networks[S]. 3GPP, 2020. (查阅网上资料, 未找到本条文献出版地信息, 请确认). [16] ZHAI Shenghua, HUI Tengfei, GONG Xianfeng, et al. High performance receiving and processing technology in satellite beam hopping communication[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 815–828. doi: 10.23919/JSEE.2024.000076. [17] 宁晓燕, 罗海玲, 孙志国, 等. 低信噪比场景下Link-16系统的联合频偏估计算法[J]. 电子与信息学报, 2023, 45(10): 3587–3593. doi: 10.11999/JEIT220967.NING Xiaoyan, LUO Hailing, SUN Zhiguo, et al. Joint frequency offset estimation for Link-16 system in low signal-noise ratio scene[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3587–3593. doi: 10.11999/JEIT220967. -
下载:
下载: