高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向人脸识别可信应用的隐私保护计算研究综述

袁霖 武雁尚 张力元 张玉书 王楠楠 高新波

袁霖, 武雁尚, 张力元, 张玉书, 王楠楠, 高新波. 面向人脸识别可信应用的隐私保护计算研究综述[J]. 电子与信息学报. doi: 10.11999/JEIT251063
引用本文: 袁霖, 武雁尚, 张力元, 张玉书, 王楠楠, 高新波. 面向人脸识别可信应用的隐私保护计算研究综述[J]. 电子与信息学报. doi: 10.11999/JEIT251063
YUAN Lin, WU Yanshang, ZHANG Liyuan, ZHANG Yushu, WANG Nannan, GAO Xinbo. Privacy-Preserving Computation in Trustworthy Face Recognition: A Comprehensive Survey[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251063
Citation: YUAN Lin, WU Yanshang, ZHANG Liyuan, ZHANG Yushu, WANG Nannan, GAO Xinbo. Privacy-Preserving Computation in Trustworthy Face Recognition: A Comprehensive Survey[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251063

面向人脸识别可信应用的隐私保护计算研究综述

doi: 10.11999/JEIT251063 cstr: 32379.14.JEIT251063
基金项目: 国家自然科学基金(62201107, U22A2096),重庆市教育委员会科学技术研究项目(KJQN202300606, KJQN202300619)
详细信息
    作者简介:

    袁霖:男,副教授,研究方向为人工智能安全与多媒体安全

    武雁尚:男,硕士生,研究方向为图像隐私保护

    张力元:男,硕士生,研究方向为图像隐私保护

    张玉书:男,教授,研究方向为多媒体隐私与安全、可信人工智能等

    王楠楠:男,教授,研究方向为计算机视觉、统计机器学习等

    高新波:男,教授,研究方向为机器学习、计算机视觉、图像分析等

    通讯作者:

    高新波 gaoxb@cqupt.edu.cn

  • 中图分类号: XXXX

Privacy-Preserving Computation in Trustworthy Face Recognition: A Comprehensive Survey

Funds: National Natural Science Foundation of China (62201107, U22A2096), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202300606 and KJQN202300619)
  • 摘要: 论文聚焦人脸识别生态,系统梳理了面向人脸识别可信应用的隐私保护计算研究进展。首先,概述了人脸识别系统的基本架构与流程,剖析非授权采集、信息泄露、梯度泄露、成员推理、人脸重建及非授权识别等关键隐私风险。随后,围绕数据变换、分布式、图像合成和对抗扰动四类主流隐私保护范式,解析加密计算、联邦学习、频域学习、特征模板保护、合成图像训练、身份保持匿名化、虚拟身份识别、差分隐私、重建攻击防御与对抗性隐私保护等十类代表性技术。最后,展望未来研究方向,包括隐私保护计算的效率提升、生成式大模型带来的新机遇与挑战、新型识别范式的构建以及标准化评估体系的建立。论文旨在为可信人脸识别研究提供系统性参考,推动其在信息物理系统中的安全与可信应用,进一步强化个人信息保护。
  • 图  1  人脸身份识别系统工作流程、各阶段涉及的隐私风险,以及相应的隐私保护策略示意图。

    图  2  基于加密计算的安全人脸识别方法示意图。该类方法通常采用同态加密、矩阵变换等手段对人脸特征进行加密,并在密文空间完成身份匹配,防止原始特征的暴露。

    图  3  基于频域学习的视觉隐私保护人脸识别示意图。该类方法通过频域转换保留识别关键特征,抑制视觉敏感信息,实现人眼难辨、机器可识别的隐私保护。

    图  4  人脸识别特征模版保护示意图。该类方法将人脸特征映射为不可逆、可撤销的二进制模板,防止特征泄露与重建攻击。

    图  5  基于联邦学习的分布式人脸识别方法示意图。该类方法允许多个客户端在本地使用各自人脸数据训练模型,仅将模型参数上传至中心服务器进行聚合,无需共享原始数据。

    图  6  基于合成图像训练的隐私保护人脸识别示意图。该类方法利用生成模型合成虚拟人脸数据替代真实图像训练,从源头规避身份泄露。

    图  7  保持原始身份特征的人脸匿名化方法示意图。该类方法对图像进行视觉匿名处理(模糊、替换或扰动),隐去人眼可辨身份,同时保留机器可识别的判别特征。

    图  8  基于虚拟身份的隐私保护人脸识别示意图。该类方法为每个真实身份生成一个外观不同的虚拟人脸用于系统注册与识别。虚拟身份在视觉和特征层面均与原始身份分离,从而实现图像层与特征层的双重隐私保护。

    图  9  基于差分隐私的识别信息保护示意图。该类方法在特征提取、识别模型或预测标签中添加可控噪声,通过满足差分隐私定义,提供可证明的隐私保障。

    图  10  人脸识别系统图像重建攻击防御方法。该类方法在训练或推理阶段引入对抗性模块或特征扰动机制,使提取的人脸特征难以被攻击者用于重建原始图像。

    图  11  防人脸识别的对抗性隐私保护示意图。该类方法通过在面部图像中添加人眼难以察觉的微小扰动,干扰未经授权的识别系统,防止人脸被恶意识别。

    表  1  代表性研究工作的实验方法与性能对比

    类别 应对
    风险
    代表性研究 测试数据集 人脸识别性能(%) 隐私保护性能 可用性评估
    加密
    计算
    (r4)
    (r5)
    Secure Face-FH[18] LFW, IJB-A, IJB-B,
    CASIA-WebFace
    TAR↑ (67.89-99.11) 理论性隐私保证 匹配耗时(2.45 ms)
    存储开销(16 KB)
    Efficient-PPFR[37] LFW TAR↑ (97.72) 注册耗时(2.614 s)
    匹配耗时(2.718 s)
    Gao[38] Yale, ORL ACC↑ (89.29-96.15) 识别总耗时(2.467 s)
    频域学习 (r2) PPFR-FD[9] LFW, CFP-FP, AgeDB, CPLFW, CALFW, VGGFace2 ACC↑ (90.78-99.68) SSIM↓ (0.713), PSNR↓ (15.66) N/A
    DuetFace[10] LFW, CFP-FP, AgeDB, CPLFW, CALFW, IJB-B, IJB-C ACC↑ (92.10-99.82) SSIM↓ (0.866), PSNR↓ (19.88)
    PartialFace[40] ACC↑ (92.03-99.80) SSIM↓ (0.591), PSNR↓ (13.70)
    模板保护 (r5) MLP-Hash[21] LFW, MOBIO TAR↑ (90.90-100) 不可链接性↓(0.01)
    不可逆性↑(9.05)
    保护执行时间↓(62 μs)
    Simhash[49] FEI, CASIA-WebFace,
    LFW
    TAR↑ (94.06-100) 字典攻击复杂度↑(2411-2430次)
    不可连接性↓(0.039-0.043)
    不可逆性↓(0.04-0.08)
    注册耗时↓(10.1-10.8 ms)
    匹配耗时↓(69-72 μs)
    SlerpFace[19] LFW, CFP-FP, AgeDB, CALFW, CPLFW, IJB-B, IJB-C ACC↑ (88.90-99.42) 不可链接性↓(0.05)
    暴力破解次数↑(3.649次)
    注册耗时↓(0.35 s)
    匹配耗时↓(0.17 s)
    联邦学习 (r3) FedFace[54] LFW, IJB-A, IJB-C ACC↑ (83.79-99.28) 经验性隐私保证 N/A
    FedFR[59] IJB-C ACC↑ (85.21)
    合成图像训练 (r1)
    (r3)
    HyperFace[73] LFW, CFP-FP, AgeDB, CPLFW, CALFW ACC↑ (87.07-98.67) 经验性隐私保证 N/A
    CemiFace[5] ACC↑ (88.86-99.22)
    MorphFace[74] ACC↑ (90.07-99.35)
    保持身份匿名化 (r2) PRO-Face[79] LFW, CelebA, VGGFace2 TAR↑ (88.4-94.7) SSIM↓ (0.527-0.875)
    LPIPS↑ (0.111-0.638)
    N/A
    Li[78] CelebA, VGGFace2 TAR↑ (61-89) 属性识别准确率↓,如
    年龄23-49 %,性别13-41 %,
    种族10-35 %
    FID↓ (41.64-54.04)
    Wang[82] CelebA, VGGFace2 AUC↑ (88.5-96.9) SSIM↓ (0.306-0.315)
    LPIPS↑ (0.559-0.588)
    MAE↑ (0.251-0.256)
    HPS↓ (2.315-3.831)
    EDR↑ (69.2-73 %)
    虚拟身份匹配 (r2)
    (r5)
    IVFG[84] LFW, CelebA AUC↑ (99.4-99.9)
    EER↓ (1.8-3.5)
    PSR↑ (98.8 %) FDR↑ (100 %), FID↓ (6.17)
    CanFG[87] CelebA, VGGFace2 AUC↑ (95.1-98.8), EER↓ (4.5-10.1) PSR↑(98.2-99.2 %) FID↓ (9.43), SSIM↑ (0.823)
    KFAAR[88] LFW, CelebA AUC↑ (97.3-99.2), EER↓ (8.9-9.2) PSR↑ (92.2-96.2 %) FDR↑ (100 %), EDR↑ (80.5-83.3 %), FID↓ (6.82-7.29)
    差分隐私 (r2)
    (r3)
    (r4)
    (r5)
    Mao[91] LFW ACC↑ (82) 理论性隐私保证 N/A
    PEEP[22] LFW, CFP-FP, AgeDB, CPLFW, CALFW, IJB-B, IJB-C ACC↑ (5.82-98.41)
    Ji[39] ACC↑ (89.33-99.48) PSNR↓ (14.28), COS↓ (0.214)
    重建攻击防御 (r5) AdvFace[20] LFW, CFP-FP, AgeDB-30 ACC↑ (86.35-97.78) SSIM↓ (0.28), PSNR↓ (6.97),
    MSE↑ (0.206), SRRA↓ (4.03%)
    N/A
    MinusFace[43] LFW, CFP-FP, AgeDB, CPLFW, CALFW, IJB-B, IJB-C ACC↑ (91.90-99.78) SSIM↓ (0.50), PSNR↓ (10.98)
    FaceObfuscator[97] ACC↑ (88.48-99.68) SSIM↓ (0.471), PSNR↓ (12.71),
    MSE↑ (0.057), COS↓ (0.004)
    存储开销:98 KB/pic
    推理耗时:1.18 ms/pic
    对抗性隐私保护 (r2)
    (r6)
    OPOM[101] Celeb-1M, LFW N/A PSR (1:N)↑ (78-86.6 %@R-1-U,
    69.4-79.3 %@R-5-U)
    N/A
    CLIP2Protect[105] CelebA, LFW PSR (1:1)↑ (64.9 %),
    PSR (1:N)↑ (82.2 %@R-1-U, 23.4 %@R-1-T)
    PSNR↑ (19.31),
    SSIM↑ (0.75),
    FID↓ (26.5)
    Salar[107] CelebA PSR (1:1)↑ (79.17 %) PSNR↑ (27.72),
    SSIM↑ (0.84), FID↓ (26.5)
    下载: 导出CSV
  • [1] TURK M A and PENTLAND A P. Face recognition using eigenfaces[C]. Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, USA, 1991: 586–591. doi: 10.1109/CVPR.1991.139758.
    [2] SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823. doi: 10.1109/CVPR.2015.7298682.
    [3] DENG Jiankang, GUO Jia, YANG Jing, et al. ArcFace: Additive angular margin loss for deep face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 5962–5979. doi: 10.1109/TPAMI.2021.3087709.
    [4] KIM M, JAIN A K, and LIU Xiaoming. AdaFace: Quality adaptive margin for face recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18729–18738. doi: 10.1109/CVPR52688.2022.01819.
    [5] SUN Zhonglin, SONG Siyang, PATRAS I, et al. CemiFace: Center-based semi-hard synthetic face generation for face recognition[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 35612–35638. doi: 10.52202/079017-1123.
    [6] BOUTROS F, HUBER M, SIEBKE P, et al. SFace: Privacy-friendly and accurate face recognition using synthetic data[C]. 2022 IEEE International Joint Conference on Biometrics, Abu Dhabi, United Arab Emirates, 2022: 1–11. doi: 10.1109/IJCB54206.2022.10007961.
    [7] QIU Haibo, YU Baosheng, GONG Dihong, et al. SynFace: Face recognition with synthetic data[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10860–10870. doi: 10.1109/ICCV48922.2021.01070.
    [8] KIM M, LIU Feng, JAIN A, et al. DCFace: Synthetic face generation with dual condition diffusion model[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 12715–12725. doi: 10.1109/CVPR52729.2023.01223.
    [9] WANG Yinggui, LIU Jian, LUO Man, et al. Privacy-preserving face recognition in the frequency domain[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2022: 2558–2566. doi: 10.1609/aaai.v36i3.20157. (查阅网上资料,未找到本条文献出版地信息,请确认).
    [10] MI Yuxi, HUANG Yuge, JI Jiazhen, et al. DuetFace: Collaborative privacy-preserving face recognition via channel splitting in the frequency domain[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 6755–6764. doi: 10.1145/3503161.3548303.
    [11] SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership inference attacks against machine learning models[C]. 2017 IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 3–18. doi: 10.1109/sp.2017.41.
    [12] SHAHREZA H O and MARCEL S. Unveiling synthetic faces: How synthetic datasets can expose real identities[C]. Proceedings of the Third Workshop on New Frontiers in Adversarial Machine Learning, Vancouver, Canada, 2024.
    [13] ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323.
    [14] LIU Yufan, ZHANG Wanqian, WU Dayan, et al. Prediction exposes your face: Black-box model inversion via prediction alignment[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2025: 288–306. doi: 10.1007/978-3-031-72764-1_17.
    [15] ZHANG Hui, DONG Xingbo, LAI Y, et al. Validating privacy-preserving face recognition under a minimum assumption[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12205–12214. doi: 10.1109/CVPR52733.2024.01160.
    [16] SHAHREZA H O and MARCEL S. Template inversion attack against face recognition systems using 3D face reconstruction[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19605–19615. doi: 10.1109/ICCV51070.2023.01801.
    [17] SHAHREZA H O and MARCEL S. Face reconstruction from facial templates by learning latent space of a generator network[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 557.
    [18] BODDETI V N. Secure face matching using fully homomorphic encryption[C]. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems, Redondo Beach, USA, 2018: 1–10. doi: 10.1109/BTAS.2018.8698601.
    [19] ZHONG Zhizhou, MI Yuxi, HUANG Yuge, et al. SlerpFace: Face template protection via spherical linear interpolation[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 10698–10706. doi: 10.1609/aaai.v39i10.33162.
    [20] WANG Zhibo, WANG He, JIN Shuaifan, et al. Privacy-preserving adversarial facial features[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 8212–8221. doi: 10.1109/CVPR52729.2023.00794.
    [21] SHAHREZA H O, HAHN V K, and MARCEL S. MLP-hash: Protecting face templates via hashing of randomized multi-layer perceptron[C]. 2023 31st European Signal Processing Conference, Helsinki, Finland, 2023: 605–609. doi: 10.23919/EUSIPCO58844.2023.10289780.
    [22] CHAMIKARA M A P, BERTOK P, KHALIL I, et al. Privacy preserving face recognition utilizing differential privacy[J]. Computers & Security, 2020, 97: 101951. doi: 10.1016/j.cose.2020.101951.
    [23] TANG Long, YE Dengpan, LV Yunna, et al. Once and for all: Universal transferable adversarial perturbation against deep hashing-based facial image retrieval[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 5136–5144. doi: 10.1609/aaai.v38i6.28319.
    [24] HU Shengshan, LIU Xiaogeng, ZHANG Yechao, et al. Protecting facial privacy: Generating adversarial identity masks via style-robust makeup transfer[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14994–15003. doi: 10.1109/CVPR52688.2022.01459.
    [25] YANG Xiao, LIU Chang, XU Longlong, et al. Towards effective adversarial textured 3D meshes on physical face recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 4119–4128. doi: 10.1109/CVPR52729.2023.00401.
    [26] ERKIN Z, FRANZ M, GUAJARDO J, et al. Privacy-preserving face recognition[C]. The 9th International Symposium on Privacy Enhancing Technologies, Seattle, USA, 2009: 235–253. doi: 10.1007/978-3-642-03168-7_14.
    [27] PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[M]. STERN J. Advances in Cryptology–EUROCRYPT ’99. Berlin: Springer, 1999: 223–238. doi: 10.1007/3-540-48910-X_16.
    [28] DAMGÅRD I, GEISLER M, and KRØIGAARD M. Efficient and secure comparison for on-line auctions[C]. 12th Australasian Conference on Information Security and Privacy, Townsville, Australia, 2007: 416–430. doi: 10.1007/978-3-540-73458-1_30.
    [29] MA Zhuo, LIU Yang, LIU Ximeng, et al. Lightweight privacy-preserving ensemble classification for face recognition[J]. IEEE Internet of Things Journal, 2019, 6(3): 5778–5790. doi: 10.1109/JIOT.2019.2905555.
    [30] ZHANG Pengbo and YANG Zhixin. A novel AdaBoost framework with robust threshold and structural optimization[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 64–76. doi: 10.1109/TCYB.2016.2623900.
    [31] OSADCHY M, PINKAS B, JARROUS A, et al. SCiFI - A system for secure face identification[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 239–254. doi: 10.1109/SP.2010.39.
    [32] TRONCOSO-PASTORIZA J R, GONZALEZ-JIMENEZ D, and PEREZ-GONZALEZ F. Fully private noninteractive face verification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(7): 1101–1114. doi: 10.1109/TIFS.2013.2262273.
    [33] JIN Xin, LIU Yan, LI Xiaodong, et al. Privacy preserving face identification in the cloud through sparse representation[C]. Proceedings of the 10th Chinese Conference on Biometric Recognition, Tianjin, China, 2015: 160–167. doi: 10.1007/978-3-319-25417-3_20.
    [34] IBARRONDO A, CHABANNE H, DESPIEGEL V, et al. Grote: Group testing for privacy-preserving face identification[C]. Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy, Charlotte, USA, 2023: 117–128. doi: 10.1145/3577923.3583656.
    [35] CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 2017: 409–437. doi: 10.1007/978-3-319-70694-8_15.
    [36] GUO Shangwei, XIANG Tao, and LI Xiaoguo. Towards efficient privacy-preserving face recognition in the cloud[J]. Signal Processing, 2019, 164: 320–328. doi: 10.1016/j.sigpro.2019.06.024.
    [37] KOU Xiaoyu, ZHANG Ziling, ZHANG Yuelei, et al. Efficient and privacy-preserving distributed face recognition scheme via FaceNet[C]. Proceedings of the ACM Turing Award Celebration Conference, Hefei, China, 2021: 110–115. doi: 10.1145/3472634.3472661.
    [38] GAO Wenjing, YU Jia, HAO Rong, et al. Privacy-preserving face recognition with multi-edge assistance for intelligent security systems[J]. IEEE Internet of Things Journal, 2023, 10(12): 10948–10958. doi: 10.1109/JIOT.2023.3240166.
    [39] JI Jiazhen, WANG Huan, HUANG Yuge, et al. Privacy-preserving face recognition with learnable privacy budgets in frequency domain[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 475–491. doi: 10.1007/978-3-031-19775-8_28.
    [40] MI Yuxi, HUANG Yuge, JI Jiazhen, et al. Privacy-preserving face recognition using random frequency components[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19616–19627. doi: 10.1109/ICCV51070.2023.01802.
    [41] HENRY C, ASIF M S, and LI Zhu. Privacy preserving face recognition with lensless camera[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096627.
    [42] ASIF M S, AYREMLOU A, SANKARANARAYANAN A, et al. Flatcam: Thin, lensless cameras using coded aperture and computation[J]. IEEE Transactions on Computational Imaging, 2017, 3(3): 384–397. doi: 10.1109/TCI.2016.2593662.
    [43] MI Yuxi, ZHONG Zhizhou, HUANG Yuge, et al. Privacy-preserving face recognition using trainable feature subtraction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 297–307. doi: 10.1109/CVPR52733.2024.00036.
    [44] PANDEY R K, ZHOU Yingbo, KOTA B U, et al. Deep secure encoding for face template protection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 77–83. doi: 10.1109/CVPRW.2016.17.
    [45] TALREJA V, VALENTI M C, and NASRABADI N M. Zero-shot deep hashing and neural network based error correction for face template protection[C]. 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems, Tampa, USA, 2019: 1–10. doi: 10.1109/BTAS46853.2019.9185979.
    [46] 赵铖辉, 李勇, 张振江. BinaryFace: 基于深层卷积神经网络的人脸模板保护模型[J]. 信息安全学报, 2020, 5(5): 43–55. doi: 10.19363/J.cnki.cn10-1380/tn.2020.09.04.

    ZHAO Chenghui, LI Yong, and ZHANG Zhenjiang. BinaryFace: The model of face template protection based on CNN[J]. Journal of Cyber Security, 2020, 5(5): 43–55. doi: 10.19363/J.cnki.cn10-1380/tn.2020.09.04.
    [47] ZHOU Junwei, SHANG Delong, LANG Huile, et al. Face template protection through residual learning based error-correcting codes[C]. Proceedings of the 4th International Conference on Control and Computer Vision, Macau, China, 2021: 112–118. doi: 10.1145/3484274.3484292.
    [48] MAI Guangcan, CAO Kai, LAN Xiangyuan, et al. SecureFace: Face template protection[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 262–277. doi: 10.1109/TIFS.2020.3009590.
    [49] GAO Ce, ZHANG Kang, WANG Weiwei, et al. Protected face templates generation based on multiple partial Walsh transformations and Simhash[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4100–4113. doi: 10.1109/TIFS.2024.3369322.
    [50] SWICK D. Walsh function generation (Corresp. )[J]. IEEE Transactions on Information Theory, 1969, 15(1): 167–167. doi: 10.1109/TIT.1969.1054251.
    [51] CHARIKAR M S. Similarity estimation techniques from rounding algorithms[C]. Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, Montreal, Canada, 2002: 380–388. doi: 10.1145/509907.509965.
    [52] 李亚红, 李一婧, 杨小东, 等. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报, 2025, 47(3): 758–768. doi: 10.11999/JEIT240796.

    LI Yahong, LI Yijing, YANG Xiaodong, et al. A verifiable federated learning scheme based on homomorphic encryption and group signature[J]. Journal of Electronics & Information Technology, 2025, 47(3): 758–768. doi: 10.11999/JEIT240796.
    [53] 郭显, 王典冬, 冯涛, 等. 基于同态加密的可验证隐私保护联邦学习方案[J]. 电子与信息学报, 2025, 47(4): 1113–1125. doi: 10.11999/JEIT240390.

    GUO Xian, WANG Diandong, FENG Tao, et al. A verifiable privacy protection federated learning scheme based on homomorphic encryption[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1113–1125. doi: 10.11999/JEIT240390.
    [54] AGGARWAL D, ZHOU Jiayu, and JAIN A K. FedFace: Collaborative learning of face recognition model[C]. 2021 IEEE International Joint Conference on Biometrics, Shenzhen, China, 2021: 1–8. doi: 10.1109/IJCB52358.2021.9484386.
    [55] MARTÍNEZ BELTRÁN E T, PERALES GÓMEZ Á L, FENG Chao, et al. Fedstellar: A platform for decentralized federated learning[J]. Expert Systems with Applications, 2024, 242: 122861. doi: 10.1016/j.eswa.2023.122861.
    [56] GAO Liang, LI Li, CHEN Yingwen, et al. FIFL: A fair incentive mechanism for federated learning[C]. Proceedings of the 50th International Conference on Parallel Processing, Lemont, USA, 2021: 82. doi: 10.1145/3472456.3472469.
    [57] ZHENG Haipeng, LI Bing, LIU Guozhu, et al. Blockchain-based federated learning framework applied in face recognition[C]. 2022 7th International Conference on Signal and Image Processing, Suzhou, China, 2022: 265–269. doi: 10.1109/ICSIP55141.2022.9886171.
    [58] NIU Yifan and DENG Weihong. Federated learning for face recognition with gradient correction[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1999–2007. doi: 10.1609/aaai.v36i2.20095. (查阅网上资料,未找到本条文献出版地信息,请确认).
    [59] LIU C T, WANG C Y, CHIEN S Y, et al. FedFR: Joint optimization federated framework for generic and personalized face recognition[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1656–1664. doi: 10.1609/aaai.v36i2.20057.
    [60] WOUBIE A, SOLOMON E, and ATTIEH J. Maintaining privacy in face recognition using federated learning method[J]. IEEE Access, 2024, 12: 39603–39613. doi: 10.1109/ACCESS.2024.3373691.
    [61] KIM J, PARK T, KIM H, et al. Federated learning for face recognition[C]. 2021 IEEE International Conference on Consumer Electronics, Las Vegas, USA, 2021: 1–2. doi: 10.1109/ICCE50685.2021.9427748.
    [62] DENG Yu, YANG Jiaolong, CHEN Dong, et al. Disentangled and controllable face image generation via 3D imitative-contrastive learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5153–5162. doi: 10.1109/CVPR42600.2020.00520.
    [63] LI Yuancheng, WANG Yimeng, and LI Daoxing. Privacy-preserving lightweight face recognition[J]. Neurocomputing, 2019, 363: 212–222. doi: 10.1016/j.neucom.2019.07.039.
    [64] SAATCHI Y and WILSON A G. Bayesian GAN[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017. 2017: 3625–3634.
    [65] KARRAS T, AITTALA M, HELLSTEN J, et al. Training generative adversarial networks with limited data[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1015.
    [66] BAE G, DE LA GORCE M, BALTRUŠAITIS T, et al. DigiFace-1M: 1 million digital face images for face recognition[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3515–3524. doi: 10.1109/WACV56688.2023.00352.
    [67] BLANZ V and VETTER T. A morphable model for the synthesis of 3D faces[C]. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, USA, 1999: 187–194. doi: 10.1145/311535.311556.
    [68] WOOD E, BALTRUŠAITIS T, HEWITT C, et al. Fake it till you make it: Face analysis in the wild using synthetic data alone[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3661–3671. doi: 10.1109/ICCV48922.2021.00366.
    [69] KOLF J N, RIEBER T, ELLIESEN J, et al. Identity-driven three-player generative adversarial network for synthetic-based face recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 806–816. doi: 10.1109/CVPRW59228.2023.00088.
    [70] BOUTROS F, GREBE J H, KUIJPER A, et al. IDiff-Face: Synthetic-based face recognition through fizzy identity-conditioned diffusion model[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19593–19604. doi: 10.1109/ICCV51070.2023.01800.
    [71] MELZI P, RATHGEB C, TOLOSANA R, et al. GANDiffFace: Controllable generation of synthetic datasets for face recognition with realistic variations[C]. Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 3078–3087. doi: 10.1109/ICCVW60793.2023.00333.
    [72] XU Jianqing, LI Shen, WU Jiaying, et al. ID3: Identity-preserving-yet-diversified diffusion models for synthetic face recognition[C]. Proceedings of the 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 77777–77798.
    [73] SHAHREZA H O and MARCEL S. HyperFace: Generating synthetic face recognition datasets by exploring face embedding hypersphere[C]. The Thirteenth International Conference on Learning Representations, Singapore, Singapore, 2025: 478–491. (查阅网上资料, 未找到本条文献页码信息, 请确认).
    [74] MI Yuxi, ZHONG Zhizhou, HUANG Yuge, et al. Data synthesis with diverse styles for face recognition via 3DMM-guided diffusion[C]. Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 21203–21214. doi: 10.1109/CVPR52734.2025.01975.
    [75] 彭春蕾, 苗紫民, 刘德成, 等. 视觉身份隐私保护: 人脸匿名化研究方法[J]. 计算机学报, 2023, 46(11): 2431–2452. doi: 10.11897/SP.J.1016.2023.02431.

    PENG Chunlei, MIAO Zimin, LIU Decheng, et al. Visual identity privacy protection: Research methods of face anonymization[J]. Chinese Journal of Computers, 2023, 46(11): 2431–2452. doi: 10.11897/SP.J.1016.2023.02431.
    [76] LI Jingzhi, HAN Lutong, ZHANG Hua, et al. Learning disentangled representations for identity preserving surveillance face camouflage[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 9748–9755. doi: 10.1109/ICPR48806.2021.9412636.
    [77] LI Jingzhi, HAN Lutong, CHEN Ruoyu, et al. Identity-preserving face anonymization via adaptively facial attributes obfuscation[C]. Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 3891–3899. doi: 10.1145/3474085.3475367. (查阅网上资料,未找到本条文献出版地信息,请确认).
    [78] LI Jingzhi, ZHANG Hua, LIANG Siyuan, et al. Privacy-enhancing face obfuscation guided by semantic-aware attribution maps[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3632–3646. doi: 10.1109/TIFS.2023.3282384.
    [79] YUAN Lin, LIU Linguo, PU Xiao, et al. PRO-face: A generic framework for privacy-preserving recognizable obfuscation of face images[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1661–1669. doi: 10.1145/3503161.3548202.
    [80] YUAN Lin, CHEN Wu, PU Xiao, et al. PRO-face C: Privacy-preserving recognition of obfuscated face via feature compensation[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4930–4944. doi: 10.1109/TIFS.2024.3388976.
    [81] SU Zhigang, ZHOU Dawei, WANG Nannan, et al. Hiding visual information via obfuscating adversarial perturbations[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 4333–4343. doi: 10.1109/ICCV51070.2023.00402.
    [82] WANG Tao, ZHANG Yushu, YANG Zixuan, et al. Seeing is not believing: An identity hider for human vision privacy protection[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2025, 7(2): 170–181. doi: 10.1109/TBIOM.2024.3449849.
    [83] 任坤, 李峥瑱, 桂源泽, 等. 低分辨率随机遮挡人脸图像的超分辨率修复[J]. 电子与信息学报, 2024, 46(8): 3343–3352. doi: 10.11999/JEIT231262.

    REN Kun, LI Zhengzhen, GUI Yuanze, et al. Super-resolution inpainting of low-resolution randomly occluded face images[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3343–3352. doi: 10.11999/JEIT231262.
    [84] YUAN Zhuowen, YOU Zhengxin, LI Sheng, et al. On generating identifiable virtual faces[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1465–1473. doi: 10.1145/3503161.3548110.
    [85] KARRAS T, LAINE S, and AILA T. A style-based generator architecture for generative adversarial networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4396–4405. doi: 10.1109/CVPR.2019.00453.
    [86] WANG Tao, ZHANG Yushu, ZHAO Ruoyu, et al. Identifiable face privacy protection via virtual identity transformation[J]. IEEE Signal Processing Letters, 2023, 30: 773–777. doi: 10.1109/LSP.2023.3289392.
    [87] WANG Tao, ZHANG Yushu, XIAO Xiangli, et al. Make privacy renewable! Generating privacy-preserving faces supporting cancelable biometric recognition[C]. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 10268–10276. doi: 10.1145/3664647.3680704.
    [88] WANG Miaomiao, HUA Guang, LI Sheng, et al. A key-driven framework for identity-preserving face anonymization[C]. 32nd Annual Network and Distributed System Security Symposium, San Diego, USA, 2025: 10168–10176. doi: 10.14722/ndss.2025.23729. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
    [89] DWORK C and LEI Jing. Differential privacy and robust statistics[C]. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 371–380. doi: 10.1145/1536414.1536466.
    [90] MAHAWAGA ARACHCHIGE P C, BERTOK P, KHALIL I, et al. Local differential privacy for deep learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 5827–5842. doi: 10.1109/JIOT.2019.2952146.
    [91] MAO Yunlong, YI Shanhe, LI Qun, et al. A privacy-preserving deep learning approach for face recognition with edge computing[C]. Proceedings of the USENIX Workshop on Hot Topics in Edge Computing, Boston, USA, 2018: 1–6. doi: 10.5555/3342665.3342676. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
    [92] MENG Qiang, ZHOU Feng, REN Hainan, et al. Improving federated learning face recognition via privacy-agnostic clusters[C]. The Tenth International Conference on Learning Representations, 2022: 237–245. (查阅网上资料, 未找到本条文献页码和出版地信息, 请确认).
    [93] WEN Yunqian, LIU Bo, DING Ming, et al. IdentityDP: Differential private identification protection for face images[J]. Neurocomputing, 2022, 501: 197–211. doi: 10.1016/j.neucom.2022.06.039.
    [94] 张啸剑, 付聪聪, 孟小峰. 结合矩阵分解与差分隐私的人脸图像发布[J]. 中国图象图形学报, 2020, 25(4): 655–668. doi: 10.11834/jig.190308.

    ZHANG Xiaojian, FU Congcong, and MENG Xiaofeng. Private facial image publication through matrix decomposition[J]. Journal of Image and Graphics, 2020, 25(4): 655–668. doi: 10.11834/jig.190308.
    [95] XIAO Taihong, TSAI Y H, SOHN K, et al. Adversarial learning of privacy-preserving and task-oriented representations[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12434–12441. doi: 10.1609/aaai.v34i07.6930.
    [96] LI Ang, GUO Jiayi, YANG Huanrui, et al. DeepObfuscator: Obfuscating intermediate representations with privacy-preserving adversarial learning on smartphones[C]. Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle, USA, 2021: 28–39. doi: 10.1145/3450268.3453519.
    [97] JIN Shuaifan, WANG He, WANG Zhibo, et al. FaceObfuscator: Defending deep learning-based privacy attacks with gradient descent-resistant features in face recognition[C]. Proceedings of the 33rd USENIX Conference on Security Symposium, Philadelphia, USA, 2024: 383.
    [98] WEI Chenda, WANG Haoyue, QIAN Zhenxing, et al. Learning discrepant transformations for face privacy protection[C]. Proceedings of the 33rd ACM International Conference on Multimedia, Dublin, Ireland, 2025: 7672–7680. doi: 10.1145/3746027.3754881.
    [99] SHAN S, WENGER Emily, ZHANG Jiayun, et al. Fawkes: Protecting privacy against unauthorized deep learning models[C]. Proceedings of the 29th USENIX Conference on Security Symposium, Santa Clara, USA, 2020: 90. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
    [100] YANG Xiao, DONG Yinpeng, PANG Tianyu, et al. Towards face encryption by generating adversarial identity masks[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3877–3887. doi: 10.1109/ICCV48922.2021.00387.
    [101] ZHONG Yaoyao and DENG Weihong. OPOM: Customized invisible cloak towards face privacy protection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3590–3603. doi: 10.1109/TPAMI.2022.3175602.
    [102] LIU Xuannan, ZHONG Yaoyao, CUI Xing, et al. AdvCloak: Customized adversarial cloak for privacy protection[J]. Pattern Recognition, 2025, 158: 111050. doi: 10.1016/j.patcog.2024.111050.
    [103] DONG Xin, WANG Rui, LIANG Siyuan, et al. Face encryption via frequency-restricted identity-agnostic attacks[C]. Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, Canada, 2023: 579–588. doi: 10.1145/3581783.3612233.
    [104] YIN Bangjie, WANG Wenxuan, YAO Taiping, et al. Adv-makeup: A new imperceptible and transferable attack on face recognition[C]. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 1252–1258. doi: 10.24963/ijcai.2021/173.
    [105] SHAMSHAD F, NASEER M, and NANDAKUMAR K. CLIP2Protect: Protecting facial privacy using text-guided makeup via adversarial latent search[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 20595–20605. doi: 10.1109/CVPR52729.2023.01973.
    [106] SUN Yuhao, YU Lingyun, XIE Hongtao, et al. DiffAM: Diffusion-based adversarial makeup transfer for facial privacy protection[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 24584–24594. doi: 10.1109/CVPR52733.2024.02321.
    [107] SALAR A, LIU Qing, TIAN Yingli, et al. Enhancing facial privacy protection via weakening diffusion purification[C]. Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 8235–8244. doi: 10.1109/CVPR52734.2025.00771.
    [108] 孙军梅, 潘振雄, 李秀梅, 等. 面向人脸验证的可迁移对抗样本生成方法[J]. 电子与信息学报, 2023, 45(5): 1842–1851. doi: 10.11999/JEIT220358.

    SUN Junmei, PAN Zhenxiong, LI Xiumei, et al. Transferable adversarial example generation method for face verification[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1842–1851. doi: 10.11999/JEIT220358.
    [109] ZHANG Yushu, WANG Tao, ZHAO Ruoyu, et al. RAPP: Reversible privacy preservation for various face attributes[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3074–3087. doi: 10.1109/TIFS.2023.3274359.
    [110] MIRJALILI V, RASCHKA S, and ROSS A. PrivacyNet: Semi-adversarial networks for multi-attribute face privacy[J]. IEEE Transactions on Image Processing, 2020, 29: 9400–9412. doi: 10.1109/TIP.2020.3024026.
    [111] MORALES A, FIERREZ J, VERA-RODRIGUEZ R, et al. SensitiveNets: Learning agnostic representations with application to face images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2158–2164. doi: 10.1109/TPAMI.2020.3015420.
    [112] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
    [113] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[C]. Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, 2008.
    [114] LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425.
    [115] CAO Qiong, SHEN Li, XIE Weidi, et al. VGGFace2: A dataset for recognising faces across pose and age[C]. Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an, China, 2018: 67–74. doi: 10.1109/FG.2018.00020.
    [116] YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[EB/OL]. https://arxiv.org/abs/1411.7923, 2014.
    [117] SENGUPTA S, CHEN Juncheng, CASTILLO C, et al. Frontal to profile face verification in the wild[C]. 2016 IEEE Winter Conference on Applications of Computer Vision, Lake Placid, USA, 2016: 1–9. doi: 10.1109/WACV.2016.7477558.
    [118] MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. AgeDB: The first manually collected, in-the-wild age database[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1997–2005. doi: 10.1109/CVPRW.2017.250.
    [119] ZHENG Tianyue and DENG Weihong. Cross-pose LFW: A database for studying cross-pose face recognition in unconstrained environments[J]. Beijing University of Posts and Telecommunications, Tech. Rep, 2018, 5(7): 1-6. (查阅网上资料, 未找到本条文献卷期, 刊名和页码信息, 请确认).
    [120] ZHENG Tianyue, DENG Weihong, and HU Jiani. Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments[EB/OL]. https://arxiv.org/abs/1708.08197, 2017.
    [121] THOMAZ C E and GIRALDI G A. A new ranking method for principal components analysis and its application to face image analysis[J]. Image and Vision Computing, 2010, 28(6): 902–913. doi: 10.1016/j.imavis.2009.11.005.
    [122] WHITELAM C, TABORSKY E, BLANTON A, et al. IARPA JANUS benchmark-B face dataset[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 592–600. doi: 10.1109/CVPRW.2017.87.
    [123] MAZE B, ADAMS J, DUNCAN J A, et al. IARPA Janus Benchmark-C: Face dataset and protocol[C]. 2018 International Conference on Biometrics (ICB), Gold Coast, Australia, 2018: 158–165. doi: 10.1109/ICB2018.2018.00033.
    [124] LEE K C, HO J, and KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684–698. doi: 10.1109/TPAMI.2005.92.
    [125] SAKTHIVEL S, LAKSHMIPATHI R, and ARUMUGAM M A M. Evaluation of feature extraction and dimensionality reduction algorithms for face recognition using ORL database[C]. Proceedings of the 2009 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, USA, 2009: 367–373. doi: 10.1109/IPCV.2009.50. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
    [126] MCCOOL C, WALLACE R, MCLAREN M, et al. Session variability modelling for face authentication[J]. IET Biometrics, 2013, 2(3): 117–129. doi: 10.1049/iet-bmt.2012.0059.
    [127] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595. doi: 10.1109/CVPR.2018.00068.
    [128] GOMEZ-BARRERO M, GALBALLY J, RATHGEB C, et al. General framework to evaluate unlinkability in biometric template protection systems[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(6): 1406–1420. doi: 10.1109/TIFS.2017.2788000.
    [129] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6629–6640.
    [130] ISO. ISO/IEC 24745: 2022 Information security, cybersecurity and privacy protection — biometric information protection[S]. Geneva: ISO, 2022. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-02-05
  • 录用日期:  2026-02-05
  • 网络出版日期:  2026-02-15

目录

    /

    返回文章
    返回