| [1] |
陈佳美, 孙慧雯, 李玉峰, 等. 基于双深度Q网络算法的无人机辅助密集网络资源优化策略[J]. 电子与信息学报, 2025, 47(8): 2621–2629. doi: 10.11999/JEIT250021.CHEN Jiamei, SUN Huiwen, LI Yufeng, et al. Double deep Q network algorithm-based unmanned aerial vehicle-assisted dense network resource optimization strategy[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2621–2629. doi: 10.11999/JEIT250021.
|
| [2] |
LI Huan, TANG Xiao, ZHAI Daosen, et al. Energy-efficient deployment and resource allocation for O-RAN-enabled UAV-assisted communication[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(3): 1128–1140. doi: 10.1109/TGCN.2024.3422393.
|
| [3] |
YANG K, YU J, and LEE C. Base station deployment for path-aware UAV communications[C]. 2024 International Conference on Electronics, Information, and Communication (ICEIC), Taipei, Taiwan, 2024: 1–4. doi: 10.1109/ICEIC61013.2024.10457175.
|
| [4] |
NOMIKOS N, GKONIS P K, BITHAS P S, et al. A survey on UAV-aided maritime communications: Deployment considerations, applications, and future challenges[J]. IEEE Open Journal of the Communications Society, 2023, 4: 56–78. doi: 10.1109/OJCOMS.2022.3225590.
|
| [5] |
GU Xiaohui and ZHANG Guoan. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
|
| [6] |
SHI Guoliang, QIU Dongxing, and HU Qiliang. Three-dimensional position deployment of UAV base stations based on improved grey wolf optimization algorithm[C]. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2024: 997–1002. doi: 10.1109/ICETCI61221.2024.10594358.
|
| [7] |
何江, 喻莞芯, 黄浩, 等. 多无人机分布式感知任务分配-通信基站关联与飞行策略联合优化设计[J]. 电子与信息学报, 2025, 47(5): 1402–1417.HE Jiang, YU Wanxin, HUANG Hao, et al. Joint task allocation, communication base station association and flight strategy optimization design for distributed sensing unmanned aerial vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1402–1417.
|
| [8] |
李威, 李跃军. 利用无人机搭建高空基站的研究[J]. 通讯世界, 2017(9): 12–13. doi: 10.3969/j.issn.1006-4222.2017.09.007.LI Wei and LI Yuejun. The research on building high-altitude communication base station by using UAV[J]. Telecom World, 2017(9): 12–13. doi: 10.3969/j.issn.1006-4222.2017.09.007.
|
| [9] |
ROTTONDI C, MALANDRINO F, BIANCO A, et al. Scheduling of emergency tasks for multiservice UAVs in post-disaster scenarios[J]. Computer Networks, 2021, 184: 107644. doi: 10.1016/j.comnet.2020.107644.
|
| [10] |
JIN Nansen, GUI Jinsong, and ZHOU Xinran. Equalizing service probability in UAV-assisted wireless powered mmWave networks for post-disaster rescue[J]. Computer Networks, 2023, 225: 109644. doi: 10.1016/j.comnet.2023.109644.
|
| [11] |
YANG Peng, CAO Xianbin, YIN Chao, et al. Proactive drone-cell deployment: Overload relief for a cellular network under flash crowd traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2877–2892. doi: 10.1109/TITS.2017.2700432.
|
| [12] |
PRASAD N L and RAMKUMAR B. 3-D deployment and trajectory planning for relay based UAV assisted cooperative communication for emergency scenarios using Dijkstra's algorithm[C]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5049–5063. doi: 10.1109/TVT.2022.3224304.
|
| [13] |
ZHANG Xuhui, XING Huijun, SHEN Yanyan, et al. Age of information minimization in UAV-enabled IoT networks via federated reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2025, 24(9): 7923–7939. doi: 10.1109/TWC.2025.3563426.
|
| [14] |
ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162.
|
| [15] |
ABD-ELMAGID M A and DHILLON H S. Average peak age-of-information minimization in UAV-assisted IoT networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 2003–2008. doi: 10.1109/TVT.2018.2885871.
|
| [16] |
ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1343–1358. doi: 10.1109/TWC.2022.3204438.
|
| [17] |
ZHANG Jianhang, KANG Kai, YANG Miao, et al. AoI-minimization in UAV-assisted IoT network with massive devices[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 1290–1295. doi: 10.1109/WCNC51071.2022.9771857.
|
| [18] |
WAN Liangtian, ZHANG Kun, SUN Lu, et al. Energy-AOI-aware UAV-assisted data collection: A multi-agent deep reinforcement learning-based trajectory optimization[C]. 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 2023: 176–180. doi: 10.1109/ICCT59356.2023.10419500.
|
| [19] |
KALANTARI E, YANIKOMEROGLU H, and YONGACOGLU A. On the number and 3D placement of drone base stations in wireless cellular networks[C]. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, Canada, 2016: 1–6. doi: 10.1109/VTCFall.2016.7881122.
|
| [20] |
LUO Jingjing, SONG Jialun, ZHENG Fuchun, et al. User-centric UAV deployment and content placement in cache-enabled multi-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5656–5660. doi: 10.1109/TVT.2022.3152246.
|
| [21] |
WU Di, XU Juan, YUAN Jiabin, et al. A novel deployment method for UAV-mounted mobile base stations[C]. 2021 17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, United Kingdom, 2021: 40–47. doi: 10.1109/MSN53354.2021.00022.
|
| [22] |
ALZENAD M, EL-KEYI A, LAGUM F, et al. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage[J]. IEEE Wireless Communications Letters, 2017, 6(4): 434–437. doi: 10.1109/LWC.2017.2700840.
|
| [23] |
李莹雪, 赵继军, 魏忠诚. 基于无人机基站的节能通信部署研究[J]. 计算机应用与软件, 2022, 39(5): 153–159. doi: 10.3969/j.issn.1000-386x.2022.05.024.LI Yingxue, ZHAO Jijun, and WEI Zhongcheng. Energy-efficient deployment of unmanned aerial vehicle base station[J]. Computer Applications and Software, 2022, 39(5): 153–159. doi: 10.3969/j.issn.1000-386x.2022.05.024.
|
| [24] |
MOZAFFARI M, SAAD W, BENNIS M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8): 1647–1650. doi: 10.1109/LCOMM.2016.2578312.
|
| [25] |
NOH S C, JEON H B, and CHAE C B. Energy-efficient deployment of multiple UAVs using ellipse clustering to establish base stations[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1155–1159. doi: 10.1109/LWC.2020.2982889.
|
| [26] |
GUO Hongying, WANG Li, LI Ruoguang, et al. An improved virtual force approach for UAV deployment and resource allocation in emergency communications[Z]. arXiv: 2401.09013, 2024. doi: 10.48550/arXiv.2401.09013. (查阅网上资料,不确定文献类型及格式是否正确,请确认).
|
| [27] |
ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
|
| [28] |
YOU J S, JUNG S, SEO J, et al. Energy-efficient 3-D placement of an unmanned aerial vehicle base station with antenna tilting[J]. IEEE Communications Letters, 2020, 24(6): 1323–1327. doi: 10.1109/LCOMM.2020.2979437.
|
| [29] |
CROSWELL W. Antenna theory; analysis and design[J]. IEEE Antennas and Propagation Society Newsletter, 1982, 24(6): 28–29. doi: 10.1109/MAP.1982.27654.
|
| [30] |
MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008.
|
| [31] |
LIANG Tianhao, ZHANG Tingting, WU Qingqing, et al. Age of information based scheduling for UAV aided localization and communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4610–4626. doi: 10.1109/TWC.2023.3320871.
|