高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用户需求差异化场景下AoI优先的多无人机部署及资源分配方法

金飞鸿 张静 谢亚琴

金飞鸿, 张静, 谢亚琴. 用户需求差异化场景下AoI优先的多无人机部署及资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT251062
引用本文: 金飞鸿, 张静, 谢亚琴. 用户需求差异化场景下AoI优先的多无人机部署及资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT251062
JIN Feihong, ZHANG Jing, XIE Yaqin. AoI-prioritized Multi-UAV Deployment and Resource Allocation Method in Scenarios with Differentiated User Requirements[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251062
Citation: JIN Feihong, ZHANG Jing, XIE Yaqin. AoI-prioritized Multi-UAV Deployment and Resource Allocation Method in Scenarios with Differentiated User Requirements[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251062

用户需求差异化场景下AoI优先的多无人机部署及资源分配方法

doi: 10.11999/JEIT251062 cstr: 32379.14.JEIT251062
基金项目: 国家自然科学基金项目(62001238),江苏省重大科技专项(BG2024002)
详细信息
    作者简介:

    金飞鸿:男,硕士生 ,研究方向为无人机定位及资源分配

    张静:女,硕士,研究方向为无人机通信及资源分配

    谢亚琴:女,副教授,硕士生导师,研究方向包括室内定位、卫星导航、路径规划及人工智能

    通讯作者:

    谢亚琴 xyq@nuist.edu.cn

  • 中图分类号: TN927

AoI-prioritized Multi-UAV Deployment and Resource Allocation Method in Scenarios with Differentiated User Requirements

Funds: National Science Foundation of China (62001238), Major Science and Technology Project of Jiangsu Province under Grant BG2024002.
  • 摘要: 在发生自然灾害等紧急情况下,地面固定基站被损毁,可能无法及时恢复。同时,由于无人机的灵活性和低成本特性,基于无人机的应急通信需求吸引了学术界和工业界的广泛关注。然而,在探索应急通信中的带宽和功率分配方案时,现有的方案忽略了不同地面用户之间业务量需求的差异性,同时也未充分考虑信息新鲜度对应急决策的重要性。考虑到不同用户的业务量需求,且信息年龄(Age of Information, AoI)直接影响应急响应的时效性,该文提出了一种用于应急场景下的基于AoI的多无人机部署及资源分配方案。首先,在满足用户总业务量需求下,求解所需最少无人机数量。然后,进一步优化无人机的带宽、功率和三维位置,以最小化系统的平均AoI。仿真结果表明,所提出的方案在保证AoI最小的同时,所需的无人机数量最少。此外,与未联合优化无人机位置及通信资源的基准方案相比,该文所提方案显著提升了信息新鲜度,使系统平均AoI降低了21.1%。
  • 图  1  系统模型图

    图  2  所需UAV数量及其2D部署示意图

    图  3  所需UAV数量与GU数量和UAV可服务最大GU数量的关系图

    (a)所需的UAV数量与GU的数量的关系图 (b)所需的UAV数量与UAV可服务最大GU数量的关系图

    图  4  AoI和所需UAV数量随GU最大业务量需求变化图

    图  5  GU数据传输时间与资源分配对比图

    图  6  平均AoI与UAV能耗和所需UAV数量随GU变化关系图

  • [1] 陈佳美, 孙慧雯, 李玉峰, 等. 基于双深度Q网络算法的无人机辅助密集网络资源优化策略[J]. 电子与信息学报, 2025, 47(8): 2621–2629. doi: 10.11999/JEIT250021.

    CHEN Jiamei, SUN Huiwen, LI Yufeng, et al. Double deep Q network algorithm-based unmanned aerial vehicle-assisted dense network resource optimization strategy[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2621–2629. doi: 10.11999/JEIT250021.
    [2] LI Huan, TANG Xiao, ZHAI Daosen, et al. Energy-efficient deployment and resource allocation for O-RAN-enabled UAV-assisted communication[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(3): 1128–1140. doi: 10.1109/TGCN.2024.3422393.
    [3] YANG K, YU J, and LEE C. Base station deployment for path-aware UAV communications[C]. 2024 International Conference on Electronics, Information, and Communication (ICEIC), Taipei, Taiwan, 2024: 1–4. doi: 10.1109/ICEIC61013.2024.10457175.
    [4] NOMIKOS N, GKONIS P K, BITHAS P S, et al. A survey on UAV-aided maritime communications: Deployment considerations, applications, and future challenges[J]. IEEE Open Journal of the Communications Society, 2023, 4: 56–78. doi: 10.1109/OJCOMS.2022.3225590.
    [5] GU Xiaohui and ZHANG Guoan. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
    [6] SHI Guoliang, QIU Dongxing, and HU Qiliang. Three-dimensional position deployment of UAV base stations based on improved grey wolf optimization algorithm[C]. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2024: 997–1002. doi: 10.1109/ICETCI61221.2024.10594358.
    [7] 何江, 喻莞芯, 黄浩, 等. 多无人机分布式感知任务分配-通信基站关联与飞行策略联合优化设计[J]. 电子与信息学报, 2025, 47(5): 1402–1417.

    HE Jiang, YU Wanxin, HUANG Hao, et al. Joint task allocation, communication base station association and flight strategy optimization design for distributed sensing unmanned aerial vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1402–1417.
    [8] 李威, 李跃军. 利用无人机搭建高空基站的研究[J]. 通讯世界, 2017(9): 12–13. doi: 10.3969/j.issn.1006-4222.2017.09.007.

    LI Wei and LI Yuejun. The research on building high-altitude communication base station by using UAV[J]. Telecom World, 2017(9): 12–13. doi: 10.3969/j.issn.1006-4222.2017.09.007.
    [9] ROTTONDI C, MALANDRINO F, BIANCO A, et al. Scheduling of emergency tasks for multiservice UAVs in post-disaster scenarios[J]. Computer Networks, 2021, 184: 107644. doi: 10.1016/j.comnet.2020.107644.
    [10] JIN Nansen, GUI Jinsong, and ZHOU Xinran. Equalizing service probability in UAV-assisted wireless powered mmWave networks for post-disaster rescue[J]. Computer Networks, 2023, 225: 109644. doi: 10.1016/j.comnet.2023.109644.
    [11] YANG Peng, CAO Xianbin, YIN Chao, et al. Proactive drone-cell deployment: Overload relief for a cellular network under flash crowd traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2877–2892. doi: 10.1109/TITS.2017.2700432.
    [12] PRASAD N L and RAMKUMAR B. 3-D deployment and trajectory planning for relay based UAV assisted cooperative communication for emergency scenarios using Dijkstra's algorithm[C]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5049–5063. doi: 10.1109/TVT.2022.3224304.
    [13] ZHANG Xuhui, XING Huijun, SHEN Yanyan, et al. Age of information minimization in UAV-enabled IoT networks via federated reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2025, 24(9): 7923–7939. doi: 10.1109/TWC.2025.3563426.
    [14] ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162.
    [15] ABD-ELMAGID M A and DHILLON H S. Average peak age-of-information minimization in UAV-assisted IoT networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 2003–2008. doi: 10.1109/TVT.2018.2885871.
    [16] ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1343–1358. doi: 10.1109/TWC.2022.3204438.
    [17] ZHANG Jianhang, KANG Kai, YANG Miao, et al. AoI-minimization in UAV-assisted IoT network with massive devices[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 1290–1295. doi: 10.1109/WCNC51071.2022.9771857.
    [18] WAN Liangtian, ZHANG Kun, SUN Lu, et al. Energy-AOI-aware UAV-assisted data collection: A multi-agent deep reinforcement learning-based trajectory optimization[C]. 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 2023: 176–180. doi: 10.1109/ICCT59356.2023.10419500.
    [19] KALANTARI E, YANIKOMEROGLU H, and YONGACOGLU A. On the number and 3D placement of drone base stations in wireless cellular networks[C]. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, Canada, 2016: 1–6. doi: 10.1109/VTCFall.2016.7881122.
    [20] LUO Jingjing, SONG Jialun, ZHENG Fuchun, et al. User-centric UAV deployment and content placement in cache-enabled multi-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5656–5660. doi: 10.1109/TVT.2022.3152246.
    [21] WU Di, XU Juan, YUAN Jiabin, et al. A novel deployment method for UAV-mounted mobile base stations[C]. 2021 17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, United Kingdom, 2021: 40–47. doi: 10.1109/MSN53354.2021.00022.
    [22] ALZENAD M, EL-KEYI A, LAGUM F, et al. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage[J]. IEEE Wireless Communications Letters, 2017, 6(4): 434–437. doi: 10.1109/LWC.2017.2700840.
    [23] 李莹雪, 赵继军, 魏忠诚. 基于无人机基站的节能通信部署研究[J]. 计算机应用与软件, 2022, 39(5): 153–159. doi: 10.3969/j.issn.1000-386x.2022.05.024.

    LI Yingxue, ZHAO Jijun, and WEI Zhongcheng. Energy-efficient deployment of unmanned aerial vehicle base station[J]. Computer Applications and Software, 2022, 39(5): 153–159. doi: 10.3969/j.issn.1000-386x.2022.05.024.
    [24] MOZAFFARI M, SAAD W, BENNIS M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8): 1647–1650. doi: 10.1109/LCOMM.2016.2578312.
    [25] NOH S C, JEON H B, and CHAE C B. Energy-efficient deployment of multiple UAVs using ellipse clustering to establish base stations[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1155–1159. doi: 10.1109/LWC.2020.2982889.
    [26] GUO Hongying, WANG Li, LI Ruoguang, et al. An improved virtual force approach for UAV deployment and resource allocation in emergency communications[Z]. arXiv: 2401.09013, 2024. doi: 10.48550/arXiv.2401.09013. (查阅网上资料,不确定文献类型及格式是否正确,请确认).
    [27] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [28] YOU J S, JUNG S, SEO J, et al. Energy-efficient 3-D placement of an unmanned aerial vehicle base station with antenna tilting[J]. IEEE Communications Letters, 2020, 24(6): 1323–1327. doi: 10.1109/LCOMM.2020.2979437.
    [29] CROSWELL W. Antenna theory; analysis and design[J]. IEEE Antennas and Propagation Society Newsletter, 1982, 24(6): 28–29. doi: 10.1109/MAP.1982.27654.
    [30] MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008.
    [31] LIANG Tianhao, ZHANG Tingting, WU Qingqing, et al. Age of information based scheduling for UAV aided localization and communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4610–4626. doi: 10.1109/TWC.2023.3320871.
  • 加载中
图(6)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-12
  • 录用日期:  2025-12-12
  • 网络出版日期:  2025-12-18

目录

    /

    返回文章
    返回