高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度强化学习的连续微流控生物芯片一步式架构综合

刘耿耿 焦鑫悦 潘友林 黄兴

刘耿耿, 焦鑫悦, 潘友林, 黄兴. 基于深度强化学习的连续微流控生物芯片一步式架构综合[J]. 电子与信息学报. doi: 10.11999/JEIT251058
引用本文: 刘耿耿, 焦鑫悦, 潘友林, 黄兴. 基于深度强化学习的连续微流控生物芯片一步式架构综合[J]. 电子与信息学报. doi: 10.11999/JEIT251058
LIU Genggeng, JIAO Xinyue, PAN Youlin, HUANG Xing. One-Pass Architectural Synthesis for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251058
Citation: LIU Genggeng, JIAO Xinyue, PAN Youlin, HUANG Xing. One-Pass Architectural Synthesis for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251058

基于深度强化学习的连续微流控生物芯片一步式架构综合

doi: 10.11999/JEIT251058 cstr: 32379.14.JEIT251058
基金项目: 国家自然科学基金(62372109, 62572396),福建省杰出青年科学基金(2023J06017)
详细信息
    作者简介:

    刘耿耿:男,博士,教授,研究方向为微流体生物芯片及超大规模集成电路设计自动化

    焦鑫悦:女,硕士生,研究方向为微流体生物芯片设计自动化

    潘友林:男,博士生,研究方向为微流体生物芯片设计自动化

    黄兴:男,博士,教授,研究方向为微流体生物芯片及超大规模集成电路设计自动化

    通讯作者:

    黄兴 xing.huang1010@gmail.com

  • 中图分类号: TN402; TP391.41

One-Pass Architectural Synthesis for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning

Funds: The National Natural Science Foundation of China (62372109, 62572396), Fujian Science Fund for Distinguished Young Scholars (2023J06017)
  • 摘要: 连续微流控生物芯片因其微型化、高可靠性和低样品消耗等优势,广泛应用于生物医学领域。然而,随着芯片集成度提升,其设计复杂性显著增加,传统分步式设计方法将绑定、调度、布局和布线等任务分步处理,各环节间信息交互不足,导致方案质量低、设计周期长。为此,该文提出一种基于深度强化学习的连续微流控生物芯片一步式架构综合方法。首先,通过图卷积神经网络提取状态特征,有效捕捉节点及其关系的信息;其次,在近端策略优化算法中结合A*算法和列表调度算法,从而得到具体的架构设计方案;最后,设计了一种多目标奖励函数,将生化反应时间、流道总长度及阀门数量进行归一化加权组合,并通过近端策略优化算法的策略梯度更新机制实现复杂决策空间的高效探索。实验表明,在基准测试用例上,与现有方法相比,该文方法在生化反应时间上优化了2.1%,流道总长度减少21.3%,阀门数量减少65.0%,且在较大规模芯片上仍能生成可行解。
  • 图  1  连续微流控生物芯片两层结构示意图

    图  2  环境建模流程

    图  3  时序图和设备库

    图  4  st–1绑定、调度、布局以及布线方案

    图  5  st绑定、调度、布局以及布线方案

    图  6  所提DRL方法在不同测试用例与不同芯片面积上的学习曲线

    1  DRL模型的训练过程

     输入:时序图和设备库
     输出:高效的芯片流层架构解
     1 初始化:
     (1)actor网络$ \pi_{\theta}(\boldsymbol{a}|\boldsymbol{s}) $和critic网络$ V_{\phi}(\boldsymbol{s}) $的参数$ \theta $和$ \phi $
     (2)设置超参数,包括学习率$ \alpha $、折扣因子$ \gamma $、批量大小B和训练
     步数N
     (3)初始化经验回放缓冲区以及存储状态-动作-奖励序列
     2 对于每个epoch:
     (1)While step$ \leq $100:
      (a)根据当前策略$ \pi_{\theta}(\boldsymbol{a}_t|\boldsymbol{s_{\mathit{t}}}) $选择动作
      (b)通过执行动作$ \boldsymbol{a}_t $生成一个绑定和布局方案,并转移到环境
      中的下一个状态$ \boldsymbol{s}_{t+1} $
      (c)如果布局合法,则结合列表调度算法和A*算法生成调度和
      布线方案,得到总调度时间
      (d)计算总奖励值$ {r}_{t} $
      (e)将$ (\boldsymbol{s}_t,\boldsymbol{a}_t,r_t,\boldsymbol{s}_{t+1}) $存入经验回放缓冲区
      (f)$ \boldsymbol{s}_t\leftarrow\boldsymbol{s}_{t+1} $, step$ \leftarrow $step+1
     (3)使用时间差分误差$ \delta_t=r_t+\gamma V_{\phi}(\boldsymbol{s}_{t+1})-V_{\phi}(\boldsymbol{s}_t) $计算优势函
     数$ A_{\pi}(\boldsymbol{s}_t,\boldsymbol{a}_t) $
     (4)使用PPO策略梯度公式更新策略网络参数
     3 经过多个epoch,最终得到一个高效的芯片流层架构解
    下载: 导出CSV

    表  1  实验中的测试用例

    测试用例|O||E||混合器||加热器||过滤器||分离器||检测器||存储器|
    PCR715400001
    IVD1224400041
    ProteinSplit1427400331
    Synthetic11015222021
    Synthetic21521340041
    Synthetic32028440401
    Synthetic43036622021
    Synthetic55060822021
    下载: 导出CSV

    表  2  本文方法执行3 ×106回合训练所花费的时间(h)

    测试用例时长 测试用例时长
    PCR2.5Synthetic28.1
    IVD6.8Synthetic310.5
    ProteinSplit6.5Synthetic419.1
    Synthetic16.2Synthetic523.4
    下载: 导出CSV

    表  3  与BigIntegr[11]在生化反应时间、流通道总长度和额外引入的阀门数上进行对比

    测试用例尺寸生化反应时间流通道总长度额外引入的阀门数
    BI(s)DI(s)Imp (%)BI(mm)DI(mm)Imp (%)BIDIImp (%)
    PCR50×5017170.0403025.0660.0
    60×601718–5.9503040.05260.0
    70×701718–5.9403025.07271.4
    IVD50×5031303.2402050.0110100.0
    60×603637–2.8806025.0100100.0
    70×7037370.0906044.490100.0
    ProteinSplit50×5089890.0403025.07442.9
    60×608889–1.1503040.013469.2
    70×7092893.3703057.116475.0
    Synthetic150×5033330.030300.08450.0
    60×6033330.0503040.010280.0
    70×7033330.05060–20.07271.4
    Synthetic250×504445–2.3504020.013376.9
    60×6054531.9905044.417476.5
    70×7052495.8904055.619668.4
    Synthetic350×5069672.94050–25.013284.6
    60×6074696.8605016.713561.5
    70×7070700.090900.0281064.3
    Synthetic450×50655810.83040–33.310460.0
    60×60544811.160600.013838.5
    70×7039367.7908011.1141121.4
    Synthetic550×501131029.7705028.67357.1
    60×60-89--50--4-
    70×70-89--50--4-
    平均值---2.1--21.3--65.0
    下载: 导出CSV

    表  4  不同算法在生化反应时间、流道总长度和额外引入的阀门数上的对比

    测试用例 尺寸 生化反应时间 流通道总长度 额外引入的阀门数
    A2C(s) PPO(s) Imp (%) A2C(mm) PPO(mm) Imp (%) A2C PPO Imp (%)
    PCR 50×50 25 17 32.0 40 30 25.0 7 6 14.3
    60×60 26 18 30.8 50 30 40.0 4 2 50.0
    70×70 26 18 30.8 60 30 50.0 6 2 66.7
    IVD 50×50 60 30 50.0 40 20 50.0 2 0 100.0
    60×60 77 37 51.9 60 60 0.0 2 0 100.0
    70×70 68 37 45.6 60 60 0.0 2 0 100.0
    ProteinSplit 50×50 122 89 27.0 40 30 25.0 7 4 42.9
    60×60 122 89 27.0 40 30 25.0 7 4 42.9
    70×70 161 89 44.7 40 30 25.0 6 4 33.3
    Synthetic1 50×50 41 33 19.5 50 30 40.0 4 4 0.0
    60×60 52 33 36.5 150 30 80.0 2 2 0.0
    70×70 55 33 36.5 170 60 64.7 2 2 0.0
    Synthetic2 50×50 91 45 50.5 70 40 42.9 10 3 70.0
    60×60 110 53 51.8 140 50 64.3 6 4 33.3
    70×70 91 49 46.2 70 40 42.9 10 6 70.0
    Synthetic3 50×50 124 67 50.0 80 50 37.5 11 2 81.8
    60×60 117 69 41.0 110 50 54.5 7 5 28.6
    70×70 141 70 50.3 150 90 40.0 10 10 0.0
    Synthetic4 50×50 91 58 36.3 60 40 33.3 6 4 33.3
    60×60 98 48 51.0 80 60 25.0 10 8 20.0
    70×70 57 36 36.8 110 80 27.3 13 11 15.4
    Synthetic5 50×50 139 102 26.6 70 50 28.6 7 3 57.1
    60×60 145 89 38.6 110 50 54.5 9 4 55.6
    70×70 118 89 24.6 90 50 44.4 11 4 63.6
    平均值 - - - 39.0 - - 38.3 - - 45.0
    下载: 导出CSV
  • [1] CONVERY N and GADEGAARD N. 30 years of microfluidics[J]. Micro and Nano Engineering, 2019, 2: 76–91. doi: 10.1016/j.mne.2019.01.003.
    [2] CHOU H P, UNGER M A, SCHERER A, et al. Integrated elastomer fluidic lab-on-a-chip-surface patterning and DNA diagnostics[C]. The Solid State Actuator and Sensor Workshop, Hilton Head, South Carolina, 2000: 111–114. doi: 10.31438/trf.hh2000.27.
    [3] KINCSES A, VIGH J P, PETROVSZKI D, et al. The use of sensors in blood-brain barrier-on-a-chip devices: Current practice and future directions[J]. Biosensors, 2023, 13(3): 357. doi: 10.3390/bios13030357.
    [4] ARACI I E and QUAKE S R. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves[J]. Lab on a Chip, 2012, 12(16): 2803–2806. doi: 10.1039/c2lc40258k.
    [5] TSENG K H, YOU S C, LIOU J Y, et al. A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization[C]. The 2013 ACM International Symposium on Physical Design, Nevada, USA, 2013: 123–129. doi: 10.1145/2451916.2451948.
    [6] 陈志盛, 朱予涵, 刘耿耿, 等. 考虑流端口数量约束下的连续微流控生物芯片流路径规划算法[J]. 电子与信息学报, 2023, 45(9): 3321–3330. doi: 10.11999/JEIT221168.

    CHEN Zhisheng, ZHU Yuhan, LIU Genggeng, et al. Flow-path planning algorithm for continuous-flow microfluidic biochips with strictly constrained flow ports[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3321–3330. doi: 10.11999/JEIT221168.
    [7] HUANG Huichang, YANG Zhongliao, ZHONG Jiayuan, et al. Genetic-A* algorithm-based routing for continuous-flow microfluidic biochip in intelligent digital healthcare[C]. 18th International Conference on Green, Pervasive, and Cloud Computing, Harbin, China, 2023: 209–223.
    [8] KESZOCZE O, WILLE R, HO T Y, et al. Exact one-pass synthesis of digital microfluidic biochips[C]. The 51st ACM/EDAC/IEEE Design Automation Conference, San Francisco, USA, 2014: 1–6. doi: 10.1145/2593069.2593135.
    [9] WILLE R, KESZOCZE O, DRECHSLER R, et al. Scalable one-pass synthesis for digital microfluidic biochips[J]. IEEE Design & Test, 2015, 32(6): 41–50. doi: 10.1109/MDAT.2015.2455344.
    [10] MOHAMMADZADEH N, WILLE R, and KESZOCZE O. Efficient one-pass synthesis for digital microfluidic biochips[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2021, 26(4): 27. doi: 10.1145/3446880.
    [11] HUANG Xing, PAN Youlin, CHEN Zhen, et al. BigIntegr: One-pass architectural synthesis for continuous-flow microfluidic lab-on-a-chip systems[C]. 2021 IEEE/ACM International Conference on Computer Aided Design, Munich, Germany, 2021: 1–8. doi: 10.1109/ICCAD51958.2021.9643576.
    [12] HUANG Xing, PAN Youlin, CHEN Zhen, et al. Design automation for continuous-flow lab-on-a-chip systems: A one-pass paradigm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(1): 327–331. doi: 10.1109/TCAD.2022.3166105.
    [13] MIRHOSEINI A, GOLDIE A, YAZGAN M, et al. A graph placement methodology for fast chip design[J]. Nature, 2021, 594(7862): 207–212. doi: 10.1038/s41586-021-03544-w.
    [14] 蔡华洋, 黄兴, 刘耿耿. 基于深度强化学习的连续微流控生物芯片控制逻辑布线[J]. 计算机研究与发展, 2025, 62(4): 950–962. doi: 10.7544/issn1000-1239.202440034.

    CAI Huayang, HUANG Xing, and LIU Genggeng. Control logic routing for continuous-flow microfluidic biochips based on deep reinforcement learning[J]. Journal of Computer Research and Development, 2025, 62(4): 950–962. doi: 10.7544/issn1000-1239.202440034.
    [15] KAWAKAMI T, SHIRO C, NISHIKAWA H, et al. A deep reinforcement learning approach to droplet routing for erroneous digital microfluidic biochips[J]. Sensors, 2023, 23(21): 8924. doi: 10.3390/s23218924.
    [16] LIM Y C, KOUZANI A Z, and DUAN W. Lab-on-a-chip: A component view[J]. Microsystem Technologies, 2010, 16(12): 1995–2015. doi: 10.1007/s00542-010-1141-6.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  31
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-09
  • 修回日期:  2025-12-20
  • 录用日期:  2025-12-22
  • 网络出版日期:  2026-01-04

目录

    /

    返回文章
    返回