高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加载人工磁导体的三频可穿戴天线

靳彬 张佳琳 杜成珠 褚君

靳彬, 张佳琳, 杜成珠, 褚君. 加载人工磁导体的三频可穿戴天线[J]. 电子与信息学报. doi: 10.11999/JEIT251050
引用本文: 靳彬, 张佳琳, 杜成珠, 褚君. 加载人工磁导体的三频可穿戴天线[J]. 电子与信息学报. doi: 10.11999/JEIT251050
JIN Bin, ZHANG Jialin, DU Chengzhu, CHU Jun. Tri-Frequency Wearable Antenna Loaded with Artificial Magnetic Conductors[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251050
Citation: JIN Bin, ZHANG Jialin, DU Chengzhu, CHU Jun. Tri-Frequency Wearable Antenna Loaded with Artificial Magnetic Conductors[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251050

加载人工磁导体的三频可穿戴天线

doi: 10.11999/JEIT251050 cstr: 32379.14.JEIT251050
基金项目: 水凝胶光纤氧气传感关键问题研究及在生物医学中的应用(国家自然基金号:62205195)
详细信息
    作者简介:

    靳彬:女,硕士生,研究方向为人工磁导体微带天线

    张佳琳:女,硕士生,研究方向为圆极化超宽带微带天线

    杜成珠:女,副教授,研究方向为射频电路与微波天线系统

    褚君:女,硕士生,研究方向为可穿戴天线

    通讯作者:

    杜成珠 duchengzhu@163.com

  • 中图分类号: TN822

Tri-Frequency Wearable Antenna Loaded with Artificial Magnetic Conductors

Funds: Research on Key Issues of Hydrogel Optical Fiber Oxygen Sensing and Its Applications in Biomedical Engineering. This work was supported by the National Natural Science Foundation of China (No. 62205195)
  • 摘要: 该文设计了一款加载人工磁导体(AMC)的三频可穿戴天线,分别设计了三叉戟结构的三频单极子天线和三层方形环状的三频AMC单元,天线和AMC均采用半柔性基板Rogers 4003,通过在天线背面加载4×5的AMC阵列,获得的集成天线实测工作带宽为2.38–2.52 GHz、3.3–3.86 GHz和5.54–7.86 GHz三个频段,覆盖ISM科学频段(2.4–2.4835 GHz)、5G-n78频段(3.3–3.8 GHz)和5G-WiFi 5.8 GHz频段(5.725–5.875 GHz)。在2.4 GHz、3.5 GHz和5.8 GHz处实测得到的增益分别为7.1 dB、7 dB和7.1 dB,较不加载时分别提升了5.3 dB、4.6 dB和2.2 dB;前后比(FBR)分别为20.8、18.0、18.8 dB,较不加载AMC时分别提升了19.8 dB、16.7 dB和12.4 dB。此外,AMC反射板能够有效降低比吸收率(SAR值),使得集成天线SAR值均在0.025 W/Kg/g以下,远低于美国联邦通信委员会(FCC)标准和欧洲联邦通信委员会(ETSI)标准,并对天线附着在人体胸腔、背部和大腿上时的性能进行实测,测试结果表明,所设计的天线能够安全、灵活地应用于人体。
  • 图  1  三频单极子天线结构图

    图  2  三频天线演化过程

    图  3  三频天线演化S11变化过程

    图  4  天线仿真和实测S11

    图  5  AMC结构图

    图  6  AMC单元反射相位图

    图  7  AMC阵列模型图

    图  8  加载AMC的三频天线结构图

    图  9  天线与AMC阵列间距da对天线S11的影响

    图  10  加载AMC后天线的仿真与实测S11

    图  11  天线弯曲状态性能测试

    图  12  集成天线在2.5 GHz的辐射方向图

    图  13  集成天线在3.5 GHz的辐射方向图

    图  14  集成天线在5.8 GHz的辐射方向图

    (a) E面 (b) H面

    图  15  加载AMC前后的天线仿真和实测增益

    图  16  天线在人体附近的实测S11

    图  17  人体组织结构仿真模型

    表  1  天线参数尺寸

    参数尺寸/mm参数尺寸/mm
    W27L322.4
    L40L414.9
    W11.1x12
    W23.4y13
    L113.8y213
    W413.5--
    下载: 导出CSV

    表  2  AMC单元尺寸

    参数尺寸/mm参数尺寸/mm
    p18b413.1
    b117.1b511.6
    b215.9b65.3
    b315.2--
    下载: 导出CSV

    表  3  AMC阵列元数对集成天线增益的影响

    AMC阵列频率/GHz增益/dB
    3×52.56.8
    3.56.6
    5.86.6
    4×52.57.6
    3.57.5
    5.87.6
    5×52.57.4
    3.57
    5.87.7
    下载: 导出CSV

    表  4  有无加载AMC阵列对天线前后比的影响

    频率/GHz未加载AMC的天线
    前后比/dB
    加载AMC的天线
    前后比/dB
    2.51.020.8
    3.51.318.0
    5.86.418.8
    下载: 导出CSV

    表  5  人体模型各层的电磁特性

    骨头 肌肉 脂肪 皮肤
    介电常数$ {\varepsilon }_{r} $ 18.49 52.67 5.27 37.95
    电导率$ \sigma $ (S/m) 0.82 1.77 0.11 1.49
    损耗正切 0.145 0.245 0.145 0.294
    密度(kg/m3) 1008 1006 900 1001
    厚度(mm) 13 20 5 2
    下载: 导出CSV

    表  6  天线与人体的间距H对SAR值的影响

    中心频点 (GHz)H(mm)SAR (W/Kg/g)
    2.580.0245
    100.0208
    3.580.0190
    100.0169
    5.880.0156
    100.0121
    下载: 导出CSV

    表  7  天线性能对比

    文献 天线尺寸(mm3) AMC尺寸(mm3) 介质基板 工作频段
    (GHz)
    增益(dB) SAR (W/Kg)
    [4] 14×35×2 28×28×1.52 天线: 纺织品
    AMC: Rogers 3003
    2.45
    5.8
    3.08
    6.43
    -
    [5] 50×50×0.5 120×120×3 FR4 2.31-2.61
    5.13-5.50
    7.24
    8.93
    -
    [13] 40×40×3.2 49×49×3.2 Rogers 3003 2.2-2.85
    5.68-6.29
    4.8
    7.75
    0.06
    0.03
    [15] 40×30×0.13 60×60×2 天线:聚酰亚胺
    AMC:聚二甲基硅氧烷
    2.39-2.49
    5.55-5.92
    1.2
    6.3
    0.4783
    1.4022
    [16] 29.8×23×0.2 60×60×2.4 聚酰亚胺 3.5
    5.8
    7.86
    8.06
    0.2
    0.06
    [17] 34×23×1.6 62.01×62.01×1.6 FR4 2.4
    5.2
    5.8
    6.2
    -
    7.58
    -
    [18] 85.5×85.8×5.62 85.5×85.5×2.64 纺织品 1.575
    2.45
    1.98
    1.94
    1.111
    1.111
    本文 27×40×1.52 72×90×1.52 Rogers 4003 2.38–2.52
    3.3–3.86
    5.54–7.86
    7.1
    7
    7.1
    0.0208
    0.0169
    0.0121
    下载: 导出CSV
  • [1] ABDELGHANY M A, IBRAHIM A A, MOHAMED H A, et al. Compact sub-6 GHz four-element flexible antenna for 5G applications[J]. Electronics, 2024, 13(3): 537. doi: 10.3390/electronics13030537.
    [2] ABOEL-HASSAN M, FARAHAT A E, and HUSSEIN K F A. Gain enhancement wideband CPW antenna based on artificial magnetic conductor[J]. Scientific Reports, 2025, 15(1): 7108. doi: 10.1038/s41598-025-89622-9.
    [3] DE MELLO R G L, LEPAGE A C, and BEGAUD X. A low-profile, triple-band, and wideband antenna using dual-band AMC[J]. Sensors, 2023, 23(4): 1920. doi: 10.3390/s23041920.
    [4] ZHANG Xiaojie, JIANG Zhenzhen, LEACH M, et al. Dual-band flexible antenna with AMC backing for wearable applications[C]. 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China, 2024: 1–3. doi: 10.1109/IWS61525.2024.10713691.
    [5] HUO Yu, LI Yao, ZHAI Huiqing, et al. A low-profile dual-band and dual-polarized antenna with AMC reflector[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 2020: 1–3.
    [6] ALI U, BASIR A, ZADA M, et al. Performance improvement of a dual-band textile antenna for on-body through artificial magnetic conductor[J]. IEEE Access, 2023, 11: 72316–72331. doi: 10.1109/ACCESS.2023.3294412.
    [7] NIKAM A A and PATIL R B. Design and development of multiband PIFA antenna for vehicular LTE/5G and V2X communication[J]. EURASIP Journal on Wireless Communications and Networking, 2023, 2023(1): 104. doi: 10.1186/s13638-023-02306-8.
    [8] LI Jun, HUANG Junjie, HE Hongli, et al. An ultra-thin multi-band logo antenna for internet of vehicles applications[J]. Electronics, 2024, 13(14): 2792. doi: 10.3390/electronics13142792.
    [9] ZHOU Yonghong, JIANG Ting, LI Hanxin, et al. A 5G MIMO multiband low-profile antenna design for automotive shark-fin systems[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(5): 1588–1592. doi: 10.1109/LAWP.2024.3363221.
    [10] XU Yanhong, BAI Tingting, ZHANG Zhiwen, et al. A compact multi-band monopole antenna for 5G NR coal mine applications[J]. Progress in Electromagnetics Research Letters, 2024, 115: 57–62. doi: 10.2528/PIERL23102302.
    [11] XU Yanhong, DONG Peipei, and WANG Anyi. Design of a high isolation tri-band MIMO antenna for coal mine applications[J]. Journal of Electromagnetic Waves and Applications, 2023, 37(13): 1106–1121. doi: 10.1080/09205071.2023.2226332.
    [12] 周涛, 张豪, 边成, 等. 多频双圆极化北斗天线设计[J]. 电子技术应用, 2022, 48(10): 9–12. doi: 10.16157/j.issn.0258-7998.223312.

    ZHOU Tao, ZHANG Hao, BIAN Cheng, et al. Multi-band dual circularly polarized antenna for Beidou navigation system[J]. Application of Electronic Technique, 2022, 48(10): 9–12. doi: 10.16157/j.issn.0258-7998.223312.
    [13] YADAV M, ALI M, and YADAV R P. Gain enhanced dual band antenna backed by dual band AMC surface for wireless body area network applications[C]. 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, Rajasthan, India, 2021: 494–497. doi: 10.1109/InCAP52216.2021.9726271.
    [14] ZHANG Ling, DU Chengzhu, SHU Haifeng, et al. A low SAR high isolation fully flexible MIMO antenna integrated with AMC array[J]. Progress in Electromagnetics Research M, 2024, 124: 79–88. doi: 10.2528/PIERM23122003.
    [15] 周勇, 庄佳杰, 周嘉豪. 基于AMC结构的双频可穿戴天线设计[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20241011.1613.018, 2024.

    ZHOU Yong, ZHUANG Jiajie, and ZHUANG Jiahao. Design of a dual-band wearable antenna based on AMC structure[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20241011.1613.018, 2024.
    [16] 王丽黎, 李君君, 张诗雨, 等. 加载人工磁导体的双频柔性可穿戴天线[J]. 电子与信息学报, 2024, 46(9): 3637–3645. doi: 10.11999/JEIT231428.

    WANG Lili, LI Junjun, ZHANG Shiyu, et al. A dual-band flexible wearable antenna loaded with an artificial magnetic conductor[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3637–3645. doi: 10.11999/JEIT231428.
    [17] YU Chenyin, YANG Shuhai, CHEN Yinchao, et al. Radiation enhancement for a triband microstrip antenna using an AMC reflector characterized with three zero-phases in reflection coefficient[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(14): 1846–1859. doi: 10.1080/09205071.2019.1645743.
    [18] JOSHI R, HUSSIN E F N M, SOH P J, et al. Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN[J]. IEEE Access, 2020, 8: 89468–89478. doi: 10.1109/ACCESS.2020.2993371.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-17
  • 录用日期:  2025-12-17
  • 网络出版日期:  2025-12-25

目录

    /

    返回文章
    返回