Tri-Frequency Wearable Antenna Loaded with Artificial Magnetic Conductors
-
摘要: 该文设计了一款加载人工磁导体(AMC)的三频可穿戴天线,分别设计了三叉戟结构的三频单极子天线和3层方形环状的三频AMC单元,天线和AMC均采用半柔性基板Rogers 4003,通过在天线背面加载4×5的AMC阵列,获得的集成天线实测工作带宽为2.38~2.52 GHz, 3.3~3.86 GHz和5.54~7.86 GHz 3个频段,覆盖ISM科学频段(2.4~
2.4835 GHz)、5G-n78频段(3.3~3.8 GHz)和5G-WiFi 5.8 GHz频段(5.725~5.875 GHz)。在2.4 GHz, 3.5 GHz和5.8 GHz处实测增益分别提升了5.3 dB, 4.6 dB和2.2 dB;前后比(FBR)较不加载AMC时分别提升了19.8 dB, 16.7 dB和12.4 dB。此外,AMC反射板能够有效降低比吸收率(SAR值),使得集成天线SAR值均在0.025 W/kg/g以下,远低于美国联邦通信委员会(FCC)标准和欧洲联邦通信委员会(ETSI)标准,并对天线附着在人体胸腔、背部和大腿上时的性能进行实测,测试结果表明,所设计的天线能够安全、灵活地应用于人体。Abstract: A tri-band wearable antenna based on an Artificial Magnetic Conductor (AMC) is designed for on-body wireless applications. The design objective is to achieve multi-band operation with enhanced radiation characteristics and reduced electromagnetic exposure under wearable conditions. The antenna adopts a tri-frequency monopole with a trident structure, while the AMC unit employs a three-layer square-ring configuration. Both the antenna and the AMC are fabricated on a semiflexible Rogers 4003 substrate. A 4 × 5 AMC array is positioned on the back of the antenna, forming an integrated structure that improves radiation directionality and suppresses backward radiation. The integrated antenna exhibits measured operating bandwidths of 2.38~2.52 GHz, 3.30~3.86 GHz, and 5.54~7.86 GHz. These frequency ranges cover the ISM band (2.400~2.4835 GHz), the 5G n78 band (3.30~3.80 GHz), and the 5G/WiFi 5.8 GHz band (5.725~5.875 GHz). The measured gains at 2.4 GHz, 3.5 GHz, and 5.8 GHz are corresponding to improvements of 5.3 dB, 4.6 dB, and 2.2 dB compared with the unloaded antenna. The front-to-back ratio improves by 19.8 dB, 16.7 dB, and 12.4 dB relative to the antenna without the AMC. The AMC reflector effectively reduces the Specific Absorption Rate (SAR), with the maximum value maintained below 0.025 W/kg/g, which is lower than the limits specified by the U.S. Federal Communications Commission and the European Telecommunications Standards Institute. Antenna performance is further evaluated when attached to the human chest, back, and thigh, and the measured results indicate stable operation, supporting safe and flexible wearable applications.-
Key words:
- Artificial Magnetic Conductor (AMC) /
- Tri-band antenna /
- Wearable antenna
-
表 1 天线参数尺寸(mm)
参数 尺寸 参数 尺寸 W 27 L3 22.4 L 40 L4 14.9 W1 1.1 x1 2 W2 3.4 y1 3 L1 13.8 y2 13 W4 13.5 - - 表 2 AMC单元尺寸(mm)
参数 尺寸 参数 尺寸 p 18 b4 13.1 b1 17.1 b5 11.6 b2 15.9 b6 5.3 b3 15.2 - - 表 3 AMC阵列元数对集成天线增益的影响
AMC阵列 频率(GHz) 增益(dB) 3×5 2.5 6.8 3.5 6.6 5.8 6.6 4×5 2.5 7.6 3.5 7.5 5.8 7.6 5×5 2.5 7.4 3.5 7 5.8 7.7 表 4 有无加载AMC阵列对天线前后比的影响
频率(GHz) 未加载AMC的天线
前后比(dB)加载AMC的天线
前后比(dB)2.5 1.0 20.8 3.5 1.3 18.0 5.8 6.4 18.8 表 5 人体模型各层的电磁特性
骨头 肌肉 脂肪 皮肤 介电常数$ {\varepsilon }_{{\mathrm{r}}} $ 18.49 52.67 5.27 37.95 电导率$ \sigma $ (S/m) 0.82 1.77 0.11 1.49 损耗正切 0.145 0.245 0.145 0.294 密度(kg/m3) 1008 1006 900 1001 厚度(mm) 13 20 5 2 表 6 天线与人体的间距H对SAR值的影响
中心频点 (GHz) H(mm) SAR (W/kg/g) 2.5 8 0.0245 10 0.0208 3.5 8 0.0190 10 0.0169 5.8 8 0.0156 10 0.0121 表 7 天线性能对比
文献 天线尺寸(mm3) AMC尺寸(mm3) 介质基板 工作频段
(GHz)增益(dB) SAR (W/Kg/g) [4] 14×35×2 28×28×1.52 天线: 纺织品
AMC: Rogers3003 2.45
5.83.08
6.43- [5] 50×50×0.5 120×120×3 FR4 2.31~2.61
5.13~5.507.24
8.93- [13] 40×40×3.2 49×49×3.2 Rogers 3003 2.2~2.85
5.68~6.294.8
7.750.06
0.03[15] 40×30×0.13 60×60×2 天线:聚酰亚胺
AMC:聚二甲基硅氧烷2.39~2.49
5.55~5.921.2
6.30.4783 1.4022 [16] 29.8×23×0.2 60×60×2.4 聚酰亚胺 3.5
5.87.86
8.060.2
0.06[17] 34×23×1.6 62.01×62.01×1.6 FR4 2.4
5.2
5.86.2
-
7.58- [18] 85.5×85.8×5.62 85.5×85.5×2.64 纺织品 1.575
2.451.98
1.941.111
1.111本文 27×40×1.52 72×90×1.52 Rogers 4003 2.38~2.52
3.3~3.86
5.54~7.867.1
7
7.10.0208 0.0169 0.0121 -
[1] ABDELGHANY M A, IBRAHIM A A, MOHAMED H A, et al. Compact sub-6 GHz four-element flexible antenna for 5G applications[J]. Electronics, 2024, 13(3): 537. doi: 10.3390/electronics13030537. [2] ABOEL-HASSAN M, FARAHAT A E, and HUSSEIN K F A. Gain enhancement wideband CPW antenna based on artificial magnetic conductor[J]. Scientific Reports, 2025, 15(1): 7108. doi: 10.1038/s41598-025-89622-9. [3] DE MELLO R G L, LEPAGE A C, and BEGAUD X. A low-profile, triple-band, and wideband antenna using dual-band AMC[J]. Sensors, 2023, 23(4): 1920. doi: 10.3390/s23041920. [4] ZHANG Xiaojie, JIANG Zhenzhen, LEACH M, et al. Dual-band flexible antenna with AMC backing for wearable applications[C]. 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China, 2024: 1–3. doi: 10.1109/IWS61525.2024.10713691. [5] HUO Yu, LI Yao, ZHAI Huiqing, et al. A low-profile dual-band and dual-polarized antenna with AMC reflector[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 2020: 1–3. [6] ALI U, BASIR A, ZADA M, et al. Performance improvement of a dual-band textile antenna for on-body through artificial magnetic conductor[J]. IEEE Access, 2023, 11: 72316–72331. doi: 10.1109/ACCESS.2023.3294412. [7] NIKAM A A and PATIL R B. Design and development of multiband PIFA antenna for vehicular LTE/5G and V2X communication[J]. EURASIP Journal on Wireless Communications and Networking, 2023, 2023(1): 104. doi: 10.1186/s13638-023-02306-8. [8] LI Jun, HUANG Junjie, HE Hongli, et al. An ultra-thin multi-band logo antenna for internet of vehicles applications[J]. Electronics, 2024, 13(14): 2792. doi: 10.3390/electronics13142792. [9] ZHOU Yonghong, JIANG Ting, LI Hanxin, et al. A 5G MIMO multiband low-profile antenna design for automotive shark-fin systems[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(5): 1588–1592. doi: 10.1109/LAWP.2024.3363221. [10] XU Yanhong, BAI Tingting, ZHANG Zhiwen, et al. A compact multi-band monopole antenna for 5G NR coal mine applications[J]. Progress in Electromagnetics Research Letters, 2024, 115: 57–62. doi: 10.2528/PIERL23102302. [11] XU Yanhong, DONG Peipei, and WANG Anyi. Design of a high isolation tri-band MIMO antenna for coal mine applications[J]. Journal of Electromagnetic Waves and Applications, 2023, 37(13): 1106–1121. doi: 10.1080/09205071.2023.2226332. [12] 周涛, 张豪, 边成, 等. 多频双圆极化北斗天线设计[J]. 电子技术应用, 2022, 48(10): 9–12. doi: 10.16157/j.issn.0258-7998.223312.ZHOU Tao, ZHANG Hao, BIAN Cheng, et al. Multi-band dual circularly polarized antenna for Beidou navigation system[J]. Application of Electronic Technique, 2022, 48(10): 9–12. doi: 10.16157/j.issn.0258-7998.223312. [13] YADAV M, ALI M, and YADAV R P. Gain enhanced dual band antenna backed by dual band AMC surface for wireless body area network applications[C]. 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, Rajasthan, India, 2021: 494–497. doi: 10.1109/InCAP52216.2021.9726271. [14] ZHANG Ling, DU Chengzhu, SHU Haifeng, et al. A low SAR high isolation fully flexible MIMO antenna integrated with AMC array[J]. Progress in Electromagnetics Research M, 2024, 124: 79–88. doi: 10.2528/PIERM23122003. [15] 周勇, 庄佳杰, 周嘉豪. 基于AMC结构的双频可穿戴天线设计[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20241011.1613.018, 2024.ZHOU Yong, ZHUANG Jiajie, and ZHUANG Jiahao. Design of a dual-band wearable antenna based on AMC structure[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20241011.1613.018, 2024. [16] 王丽黎, 李君君, 张诗雨, 等. 加载人工磁导体的双频柔性可穿戴天线[J]. 电子与信息学报, 2024, 46(9): 3637–3645. doi: 10.11999/JEIT231428.WANG Lili, LI Junjun, ZHANG Shiyu, et al. A dual-band flexible wearable antenna loaded with an artificial magnetic conductor[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3637–3645. doi: 10.11999/JEIT231428. [17] YU Chenyin, YANG Shuhai, CHEN Yinchao, et al. Radiation enhancement for a triband microstrip antenna using an AMC reflector characterized with three zero-phases in reflection coefficient[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(14): 1846–1859. doi: 10.1080/09205071.2019.1645743. [18] JOSHI R, HUSSIN E F N M, SOH P J, et al. Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN[J]. IEEE Access, 2020, 8: 89468–89478. doi: 10.1109/ACCESS.2020.2993371. -
下载:
下载: