高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效侧信道分析:从协同去噪到自适应B样条降维

罗玉玲 徐海洋 欧阳雪 付强 秦圣 刘俊秀

罗玉玲, 徐海洋, 欧阳雪, 付强, 秦圣, 刘俊秀. 高效侧信道分析:从协同去噪到自适应B样条降维[J]. 电子与信息学报. doi: 10.11999/JEIT251047
引用本文: 罗玉玲, 徐海洋, 欧阳雪, 付强, 秦圣, 刘俊秀. 高效侧信道分析:从协同去噪到自适应B样条降维[J]. 电子与信息学报. doi: 10.11999/JEIT251047
LUO Yuling, XU Haiyang, OUYANG Xue, FU Qiang, QIN Sheng, LIU Junxiu. High-Efficiency Side-Channel Analysis: From Collaborative Denoising to Adaptive B-Spline Dimension Reduction[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251047
Citation: LUO Yuling, XU Haiyang, OUYANG Xue, FU Qiang, QIN Sheng, LIU Junxiu. High-Efficiency Side-Channel Analysis: From Collaborative Denoising to Adaptive B-Spline Dimension Reduction[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251047

高效侧信道分析:从协同去噪到自适应B样条降维

doi: 10.11999/JEIT251047 cstr: 32379.14.JEIT251047
基金项目: 国家自然科学基金(62462009, 42501519),广西科技计划项目广西科技基地和人才专项(桂科AD24010047),广西青年科技人才工程(GXYESS2025144)
详细信息
    作者简介:

    罗玉玲:女,博士,教授,博士生导师,研究方向为人工智能安全

    徐海洋:男,硕士生,研究方向为侧信道攻击

    欧阳雪:女,博士,讲师,论文通信作者,研究方向为侧信道攻击

    付强:男,博士,讲师,研究方向为人工智能安全

    秦圣:男,硕士,讲师,研究方向为隐私保护

    刘俊秀:男,博士,教授,博士生导师,研究方向为类脑芯片与智能计算

    通讯作者:

    欧阳雪 ouyangxue@gxnu.edu.cn

  • 中图分类号: TN918

High-Efficiency Side-Channel Analysis: From Collaborative Denoising to Adaptive B-Spline Dimension Reduction

Funds: The National Natural Science Foundation of China (62462009, 42501519), Guangxi Science and Technology Program Project: Guangxi Science and Technology Base and Talent Special Project (Gui Ke AD24010047), Guangxi Young Science and Technology Talent Project (GXYESS2025144)
  • 摘要: 侧信道分析(SCA)是一种强大的密码分析技术,但其攻击效率受到原始功耗轨迹信噪比低、冗余高维数据掩盖局部泄露以及关键参数设定依赖经验等挑战的严重制约。针对上述问题,该文提出自适应B样条降维与协同去噪的侧信道分析方法,以实现高效且鲁棒的侧信道攻击。该框架包含3个核心步骤。首先,构建协同去噪框架(CDF),通过整合基于皮尔逊相关系数的轨迹筛选机制和基于奇异值模板的去噪方法,有效提升了功耗轨迹的信噪比。其次,设计一种新颖的基于邻域不对称性聚类(NAC)的方法,用于自适应地确定CDF中的关键阈值,从而增强方法的鲁棒性。最后,首次将B样条技术引入功耗轨迹的降维处理,并提出基于自适应B样条降维(ABDR)的高效局部建模降维方法,在大幅度压缩数据量的同时,最大限度地保留了关键泄漏信息,显著降低后续侧信道分析的计算开销。实验结果表明,在数据集OSR2560上,信噪比提升了60%,密钥恢复所需的痕迹数量从3 000条减少至1 200条。在数据集OSR407上,信噪比提升了150%,将痕迹数量从2 400条减少至1 500条,在显著降低数据维度的基础上,有效增强了正确密钥与错误猜测密钥的区分度,进而提高了攻击效率。
  • 图  1  协同去噪框架与自适应B样条降维

    图  2  在数据集OSR2560上原始数据与CDF处理后的信噪比

    图  3  数据集OSR2560不同去噪方法的猜测熵和成功率

    图  4  在数据集OSR407上原始数据与CDF处理后的信噪比

    图  5  数据集OSR407不同去噪方法的猜测熵和成功率

    图  6  CDF不同阈值选择策略的猜测熵对比

    图  7  正确密钥相关系数与维度的关系

    图  8  数据集OSR2560不同降维方法的猜测熵和成功率

    图  9  数据集OSR407不同降维方法的猜测熵和成功率

    图  10  泄露模型通用性对比

    1  协同去噪框架

     输入:原始功耗轨迹$ \boldsymbol{L}=\left\{{l}_{i}\right\}_{i=\text{1}}^{n} $,明文$ \boldsymbol{P}=\left\{{p}_{i}\right\}_{i=1}^{n} $。
     输出:去噪后的功耗轨迹$ {{\boldsymbol{L}}^{\prime\prime}} $,对应明文$ {{\boldsymbol{P}}^{\prime\prime}} $。
     (1) 遍历轨迹获取$ {M}_{\text{group}}\left[p\right] $, $ {C}_{\text{count}} $
     (2) $ {M}^{p}\left(\tau \right)={M}_{\text{group}}\left[p\right]/{C}_{\text{count}} $//计算明文均值模板
     (3) 循环$ i $从$ 1\sim n $执行
     (4) 由式(3)计算相关系数
     (5) 结束循环
     (6) NAC聚类筛选
     (7)由 $ \boldsymbol{u}_{r}^{p}\leftarrow {\boldsymbol{U}}^{p} $构建奇异值向量模板
     (8) 循环$ r $从$ 1\sim W $执行
     (9)  由式(6)计算相关系数
     (10)结束循环
     (11)NAC聚类筛选
    下载: 导出CSV

    2  基于邻域不对称性聚类

     输入:皮尔逊相关系数$ \rho \left({\boldsymbol{l}}_{i},{\boldsymbol{M}}^{{{P}_{i}}}\right) $, $ \rho \left({\boldsymbol{u}}_{r},\boldsymbol{u}_{r}^{p}\right) $,不对称性阈
     值$ {T}_{A} $,Z值百分数$ {Z}_{\text{h}},{Z}_{\text{l}} $。
     输出:聚类后的系数$ {\rho }^{\prime}\left({\boldsymbol{l}}_{i},{\boldsymbol{M}}^{{{P}_{i}}}\right) $和$ {\rho }^{\prime}\left({\boldsymbol{u}}_{r},\boldsymbol{u}_{r}^{p}\right) $。
     (1) 循环$ i $从$ 1\sim N $执行
     (2)由式(7), (8)计算不对称性分数
     (3) 结束循环
     (4) 循环$ i $从$ 1\sim N $执行
     (5) $ A\left({Z}_{i}\right) < {T}_{A} $
     (6) 根据$ Z_i > Z_{\text{h}},\ Z_i < Z_{\text{l}} $划分高/低值核心区
     (7) 分配边界点
     (8) 结束循环
    下载: 导出CSV

    3  自适应B样条降维

     输入:去噪轨迹T, B样条次数$ {k}_{d} $,B样条内部节点数量$ m $。
     输出:提取的B样条系数集合
     (1) 循环$ j $从$ 1\sim N_{\mathrm{s}} $执行
     (2) 由式(12)计算方差剖面
     (3) 结束循环
     (4) 由式(13)、式(14)计算累计分布函数
     (5) 自适应放置节点
     (6) 最小二乘法获取B样条系数
    下载: 导出CSV

    表  1  不同去噪方法在OSR2560数据集上的相关系数对比(痕迹数量:1200条,正确密钥0x0a)

    方法正确密钥相关系数错误密钥最高相关系数相关系数差值猜测密钥攻击结果
    CPA0.10990.14320.03330x05失败
    SDF[13]0.19670.19980.00310x9e失败
    WTD[15]0.11540.12310.00770x71失败
    SVD[16]0.11430.13360.01930xea失败
    CDF0.27670.19100.08570x0a成功
    下载: 导出CSV

    表  2  不同去噪方法在OSR407数据集上的相关系数对比(痕迹数量:1500条,正确密钥0x0a)

    方法正确密钥相关系数错误密钥最高相关系数相关系数差值猜测密钥攻击结果
    CPA0.11340.11410.00070xa1失败
    SDF[13]0.13110.16310.03200xbd失败
    WTD[15]0.16510.18240.01730x34失败
    SVD[16]0.02310.12060.09750xe1失败
    CDF0.22670.18640.04030x0a成功
    下载: 导出CSV

    表  3  不同降维方法在OSR2560数据集上的相关系数对比(维度:1000,痕迹数量:1200条)

    方法 正确密钥相关系数 错误密钥最高相关系数 相关系数差值 猜测密钥 攻击结果
    CDF+PCA 0.0509 0.1225 0.0716 0x39 失败
    CDF+ICA 0.1420 0.1539 0.0119 0x16 失败
    CDF+SOSD 0.0913 0.1226 0.0313 0xd3 失败
    CDF+ABDR 0.1860 0.1854 0.0006 0x0a 成功
    下载: 导出CSV

    表  4  不同降维方法在OSR407数据集上的相关系数对比(维度:500,痕迹数量:1200条)

    方法 正确密钥相关系数 错误密钥最高相关系数 相关系数差值 猜测密钥 攻击结果
    CDF+PCA 0.0891 0.1759 0.0868 0x8d 失败
    CDF+ICA 0.1064 0.1773 0.0709 0xfe 失败
    CDF+SOSD 0.0652 0.1539 0.0887 0xc1 失败
    CDF+ABDR 0.3605 0.1636 0.1969 0x0a 成功
    下载: 导出CSV
  • [1] ARPAIA P, CAPUTO F, CIOFFI A, et al. Uncertainty analysis in cryptographic key recovery for machine learning-based power measurements attacks[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1006108. doi: 10.1109/TIM.2023.3284933.
    [2] PANTOJA J J, BUCHELI V A, and DONALDSON R. Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification[J]. EPJ Quantum Technology, 2024, 11(1): 78. doi: 10.1140/epjqt/s40507-024-00290-6.
    [3] MAJI S, BANERJEE U, and CHANDRAKASAN A P. Leaky nets: Recovering embedded neural network models and inputs through simple power and timing side-channels—Attacks and defenses[J]. IEEE Internet of Things Journal, 2021, 8(15): 12079–12092. doi: 10.1109/JIOT.2021.3061314.
    [4] RAEKER-JORDAN N, CHUNG J, KONG Zhenyu, et al. Ensuring additive manufacturing quality and cyber–physical security via side-channel measurements and transmissions[J]. Journal of Manufacturing Systems, 2024, 73: 275–286. doi: 10.1016/j.jmsy.2024.02.005.
    [5] LIU A, WANG An, SUN Shaofei, et al. CL-SCA: A contrastive learning approach for profiled side-channel analysis[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 5109–5122. doi: 10.1109/TIFS.2025.3570123.
    [6] KOCHER P, JAFFE J and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference (CRYPTO 1999), Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
    [7] WU Lichao, PERIN G, and PICEK S. Weakly profiling side-channel analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024, 2024(3): 707–730. doi: 10.46586/tches.v2024.i3.707-730.
    [8] YOU Chunheng, CHIANG C H, CHAO P C P, et al. New adaptive template attacks against Montgomery-ladder-based ECCs in IoT devices[J]. IEEE Internet of Things Journal, 2024, 11(12): 22716–22725. doi: 10.1109/JIOT.2024.3384076.
    [9] WU Lichao, WEISSBART L, KRČEK M, et al. Label correlation in deep learning-based side-channel analysis[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3849–3861. doi: 10.1109/TIFS.2023.3287728.
    [10] GAO Pengfei, SONG Fu, and CHEN Taolue. Compositional verification of first-order masking countermeasures against power side-channel attacks[J]. ACM Transactions on Software Engineering and Methodology, 2024, 33(3): 79. doi: 10.1145/3635707.
    [11] DUCHARME G R and MAURINE P. Estimating the Signal-to-Noise ratio under repeated sampling of the same centered signal: Applications to side-channel attacks on a cryptoprocessor[J]. IEEE Transactions on Information Theory, 2018, 64(9): 6333–6339. doi: 10.1109/TIT.2018.2851217.
    [12] MOZIPO A T and ACKEN J M. Analysis of countermeasures against remote and local power side channel attacks using correlation power analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(6): 5128–5142. doi: 10.1109/TDSC.2024.3370711.
    [13] OU Changhai, LAM S K, SUN Degang, et al. SNR-centric power trace extractors for side-channel attacks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(4): 620–632. doi: 10.1109/TCAD.2020.3003849.
    [14] DEL POZO S M and STANDAERT F X. Blind source separation from single measurements using singular spectrum analysis[C]. The 17th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2015), Saint-Malo, France, 2015: 42–59. doi: 10.1007/978-3-662-48324-4_3.
    [15] ZHANG Fan, DONG Xiaofei, YANG Bolin, et al. A systematic evaluation of wavelet-based attack framework on random delay countermeasures[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1407–1422. doi: 10.1109/TIFS.2019.2941774.
    [16] WANG Yuanzhen, ZHANG Hongxin, FANG Xing, et al. Hybrid threshold denoising framework using singular value decomposition for side-channel analysis preprocessing[J]. Entropy, 2023, 25(8): 1133. doi: 10.3390/e25081133.
    [17] LIU Songran and YI Wang. Task parameters analysis in schedule-based timing side-channel attack[J]. IEEE Access, 2020, 8: 157103–157115. doi: 10.1109/ACCESS.2020.3019323.
    [18] PENG Dehua, GUI Zhipeng, WANG Dehe, et al. Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity[J]. Nature Communications, 2022, 13(1): 5455. doi: 10.1038/s41467-022-33136-9.
    [19] PAGUADA S, BATINA L, and ARMENDARIZ I. Toward practical autoencoder-based side-channel analysis evaluations[J]. Computer Networks, 2021, 196: 108230. doi: 10.1016/j.comnet.2021.108230.
    [20] KONG Yinan and SAEEDI E. The investigation of neural networks performance in side-channel attacks[J]. Artificial Intelligence Review, 2019, 52(1): 607–623. doi: 10.1007/s10462-018-9640-4.
    [21] MAGHREBI H and PROUFF E. On the use of independent component analysis to denoise side-channel measurements[C]. The 9th International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE 2018), Singapore, Singapore, 2018: 61–81. doi: 10.1007/978-3-319-89641-0_4.
    [22] RIOJA U, BATINA L, FLORES J L, et al. Auto-tune POIs: Estimation of distribution algorithms for efficient side-channel analysis[J]. Computer Networks, 2021, 198: 108405. doi: 10.1016/j.comnet.2021.108405.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-30
  • 修回日期:  2025-12-20
  • 录用日期:  2025-12-22
  • 网络出版日期:  2026-01-04

目录

    /

    返回文章
    返回