高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类双阶扭曲Generalized Reed-Solomon码及其扩展码

程鸿丽 朱士信

程鸿丽, 朱士信. 一类双阶扭曲Generalized Reed-Solomon码及其扩展码[J]. 电子与信息学报. doi: 10.11999/JEIT251045
引用本文: 程鸿丽, 朱士信. 一类双阶扭曲Generalized Reed-Solomon码及其扩展码[J]. 电子与信息学报. doi: 10.11999/JEIT251045
CHENG Hongli, ZHU Shixin. A Class of Double-twisted Generalized Reed-Solomon Codes and Their Extended Codes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251045
Citation: CHENG Hongli, ZHU Shixin. A Class of Double-twisted Generalized Reed-Solomon Codes and Their Extended Codes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251045

一类双阶扭曲Generalized Reed-Solomon码及其扩展码

doi: 10.11999/JEIT251045 cstr: 32379.14.JEIT251045
基金项目: 国家自然科学基金(12171134, U21A20428)
详细信息
    作者简介:

    程鸿丽:女,硕士生,研究方向为代数编码

    朱士信:男,教授,博士生导师,研究方向为代数编码理论、信息安全与序列密码等

    通讯作者:

    程鸿丽 chenghongli99@163.com

  • 中图分类号: O157.4; TN911.22

A Class of Double-twisted Generalized Reed-Solomon Codes and Their Extended Codes

Funds: National Natural Science Foundation of China (12171134, U21A20428)
  • 摘要: 该文研究了有限域$ {\mathbb{F}}_{q} $的一类双阶扭曲广义里德-所罗门(GRS)码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v}) $及其扩展码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v},\mathrm{\infty }) $,不仅给出了这两类码的校验矩阵,还分别刻画了码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v}) $是极大距离可分(MDS)码或者是几乎极大距离可分(AMDS)码以及码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v},\mathrm{\infty }) $是MDS码的充要条件。基于舒尔方法,当$ k\geq 4 $时,该文确定了这两类码的非GRS性质,还分别给出了码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v}) $为几乎自对偶码以及码$ {C}_{k,\boldsymbol{h},\boldsymbol{\eta }}(\boldsymbol{\alpha },\boldsymbol{v},\mathrm{\infty }) $为自正交码的充要条件,并且构造了一类具有灵活参数的几乎自对偶双阶扭曲GRS码。
  • [1] HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2003: 71–72. doi: 10.1017/CBO9780511807077.
    [2] THOMAS A and RAJAN B S. Binary informed source codes and index codes using certain near-MDS codes[J]. IEEE Transactions on Communications, 2018, 66(5): 2181–2190. doi: 10.1109/TCOMM.2018.2789457.
    [3] ZHOU Yousheng, WANG Feng, XIN Yang, et al. A secret sharing scheme based on near-MDS codes[C]. 2009 IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 2009: 833–836. doi: 10.1109/ICNIDC.2009.5360821.
    [4] CADAMBE V R, HUANG Cheng, and LI Jin. Permutation code: Optimal exact-repair of a single failed node in MDS code based distributed storage systems[C]. 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 1225–1229. doi: 10.1109/ISIT.2011.6033730.
    [5] KIM J L and LEE Y. Euclidean and Hermitian self-dual MDS codes over large finite fields[J]. Journal of Combinatorial Theory, Series A, 2004, 105(1): 79–95. doi: 10.1016/j.jcta.2003.10.003.
    [6] FANG Xiaolei, LIU Meiqing, and LUO Jinquan. New MDS Euclidean self-orthogonal codes[J]. IEEE Transactions on Information Theory, 2021, 67(1): 130–137. doi: 10.1109/TIT.2020.3020986.
    [7] WU Rongsheng and SHI Minjia. A modified Gilbert-Varshamov bound for self-dual quasi-twisted codes of index four[J]. Finite Fields and Their Applications, 2020, 62: 101627. doi: 10.1016/j.ffa.2019.101627.
    [8] MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland Publishing Company, 1977: 303–305. doi: 10.1137/1022103.
    [9] BEELEN P, PUCHINGER S, and NIELSEN J R N. Twisted Reed-Solomon codes[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 336–340. doi: 10.1109/ISIT.2017.8006545.
    [10] SUI Junzhen, YUE Qin, and SUN Fuqing. New constructions of self-dual codes via twisted generalized Reed-Solomon codes[J]. Cryptography and Communications, 2023, 15(5): 959–978. doi: 10.1007/s12095-023-00644-4.
    [11] ZHU Canze and LIAO Qunying. The (+)-extended twisted generalized Reed-Solomon code[J]. Discrete Mathematics, 2024, 347(2): 113749. doi: 10.1016/j.disc.2023.113749.
    [12] ZHU Canze and LIAO Qunying. A class of double-twisted generalized Reed-Solomon codes[J]. Finite Fields and Their Applications, 2024, 95: 102395. doi: 10.1016/j.ffa.2024.102395.
    [13] DING Yun and ZHU Shixin. New self-dual codes from TGRS codes with general $ \ell $ twists[J]. Advances in Mathematics of Communications, 2025, 19(2): 662–675. doi: 10.3934/amc.2024017.
    [14] BEELEN P, BOSSERT M, PUCHINGER S, et al. Structural properties of twisted Reed-Solomon codes with applications to cryptography[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 946–950. doi: 10.1109/ISIT.2018.8437923.
    [15] ZHAO Chun’e, MA Wenping, YAN Tongjiang, et al. Research on the construction of maximum distance separable codes via arbitrary twisted generalized Reed-Solomon codes[J]. IEEE Transactions on Information Theory, 2025, 71(7): 5130–5143. doi: 10.1109/TIT.2025.3563664.
    [16] FANG Weijun and XU Jingke. Deep holes of twisted Reed-Solomon codes[C]. 2024 IEEE International Symposium on Information Theory, Athens, Greece, 2024: 488–493. doi: 10.1109/ISIT57864.2024.10619676.
    [17] YAN Qianqian and ZHOU Junling. Mutually disjoint Steiner systems from BCH codes[J]. Designs, Codes and Cryptography, 2024, 92(4): 885–907. doi: 10.1007/s10623-023-01319-0.
    [18] LI Zhuo, XING Lijuan, and WANG Xinmei. Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes[J]. Physical Review A, 2008, 77(1): 012308. doi: 10.1103/PhysRevA.77.012308.
    [19] LI Yang, ZHU Shixin, and SUN Zhonghua. Covering radii and deep holes of two classes of extended twisted GRS codes and their applications[J]. IEEE Transactions on Information Theory, 2025, 71(5): 3516–3530. doi: 10.1109/TIT.2025.3541799.
    [20] SUN Zhonghua, DING Cunsheng, and CHEN Tingfang. The extended codes of some linear codes[J]. Finite Fields and Their Applications, 2024, 96: 102401. doi: 10.1016/j.ffa.2024.102401.
    [21] LIU Hongwei and PAN Xu. Galois hulls of linear codes over finite fields[J]. Designs, Codes and Cryptography, 2020, 88(2): 241–255. doi: 10.1007/s10623-019-00681-2.
    [22] LIDL R and NIEDERREITER H. Finite Fields[M]. Cambridge: Cambridge University Press, 1996: 513–516. doi: 10.1017/CBO9780511525926.
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-17

目录

    /

    返回文章
    返回