高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模遥感卫星智能任务调度方法研究进展

杜永浩 张本奎 吴健 陈盈果 闫东磊 于海琰 邢立宁 白保存

杜永浩, 张本奎, 吴健, 陈盈果, 闫东磊, 于海琰, 邢立宁, 白保存. 大规模遥感卫星智能任务调度方法研究进展[J]. 电子与信息学报. doi: 10.11999/JEIT251038
引用本文: 杜永浩, 张本奎, 吴健, 陈盈果, 闫东磊, 于海琰, 邢立宁, 白保存. 大规模遥感卫星智能任务调度方法研究进展[J]. 电子与信息学报. doi: 10.11999/JEIT251038
DU Yonghao, ZHANG Benkui, WU Jian, CHEN Yingguo, YAN Donglei, YU Haiyan, XING Lining, BAI Baocun. Survey on Intelligent Methods for Large-scale Remote Sensing Satellite Scheduling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251038
Citation: DU Yonghao, ZHANG Benkui, WU Jian, CHEN Yingguo, YAN Donglei, YU Haiyan, XING Lining, BAI Baocun. Survey on Intelligent Methods for Large-scale Remote Sensing Satellite Scheduling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251038

大规模遥感卫星智能任务调度方法研究进展

doi: 10.11999/JEIT251038 cstr: 32379.14.JEIT251038
基金项目: 国家自然科学基金(72201272, 72501214, 72201273),中国科协青年人才托举工程(2023-JCJQ-QT-042),湖南省科技创新计划(2025RC3111)
详细信息
    作者简介:

    杜永浩:男,副教授,研究方向为智能优化方法与卫星调度应用

    张本奎:男,高级工程师,研究方向为目标认知与智能筹算

    吴健:男,助理研究员,研究方向为数据驱动优化算法理论、方法与设计等

    陈盈果:男,副教授,研究方向系统体系设计和卫星任务调度等

    闫东磊:男,高级工程师,研究方向为卫星任务调度

    于海琰:男,高级工程师,研究方向为航天器体系仿真和任务规划等

    邢立宁:男,教授,研究方向为复杂系统仿真优化与调度

    白保存:男,高级工程师,研究方向为航天系统工程、装备项目管理

    通讯作者:

    吴健 jianwwwu@126.com

  • 中图分类号: TN209; TP11

Survey on Intelligent Methods for Large-scale Remote Sensing Satellite Scheduling

Funds: The National Natural Science Foundation of China (72201272,72501214,72201273), Young Elite Scientists Sponsorship Program by CAST(2023-JCJQ-QT-042), The Science and Technology Innovation Program of Hunan Province (2025RC3111)
  • 摘要: 针对遥感卫星任务调度大规模、复杂化的发展趋势和星群协同、即时服务的常态要求,依据自顶向下的原则,该文相继综述了其任务调度框架、模型与算法的发展现状。首先,基于集中式调度框架、分布式调度框架和集中-分布式调度框架,阐明了各调度框架的典型流程和适用场景。其次, 按照发源时间与建模特点的不同,从经典运筹学模型、约束满足优化模型和基于神经网络的决策模型3个角度出发, 探讨了不同卫星任务调度模型的描述方式和适用性。在此基础上,介绍了精确求解、元启发式和机器学习类等3类卫星任务调度主流算法, 揭示了各算法运行原理与优劣势。最后, 指出了规模化、订单化改造调度框架,发展混合式调度模型以及机器学习、大模型交融背景下算法工程化等未来研究新方向。
  • 图  1  我国近10年在轨卫星规模变化及未来趋势一览

    图  2  滴滴打车、美团外卖及大规模遥感星群调度等订单式调度模式(以手机平台为例)

    图  3  典型遥感卫星任务调度框架示意图

    表  1  典型卫星任务调度框架(详情见批注)

    框架种类主要优缺点
    集中式框架

    √ 主→从式框架
    √ 集中考虑全部要素,依赖主中心全局优化
    × 未降低问题规模
    × 至多适用100颗卫星,不适合大规模调度
    分布式框架

    √ 分布式,去中心化
    √ 局部优化、协商交互
    √ 问题降维、加速求解
    × 耗费星上计算与通信资源,不易收敛
    × 仅适用于理想情况或小范围独立星座
    集中-分布式框架
    √ 主$\leftrightarrow $分$\leftrightarrow $从式框架
    √ 兼具集中式与分布式优势,更加灵活
    √ 符合巨星座多级分层建设及管理特点
    × 流程机理复杂度高
    × 设计难度大
    下载: 导出CSV

    表  2  典型卫星任务调度模型

    模型种类 主要优缺点
    经典运筹学模型
    (VRP,JSP等)
    √ 最早应用
    √ 简明、直观、易用
    √ 可借鉴经典运筹学的算法配套求解
    × 需大幅简化、抽象问题
    × 仅适用数十颗小规模的卫星调度
    约束满足优化模型 √ 当前最常用
    √ 客观描述组合优化变量关系及非线性约束
    √ 适用于真实、复杂的卫星任务调度
    √ 可适用上百颗卫星的大规模调度
    × 复杂度与求解难度大
    × 对框架及算法要求高
    基于神经网络的
    决策模型
    √ 研究热点
    √ 突出分类、决策特点
    √ 适用单星在线调度或多星任务分配环节
    √ 可嵌入大规模订单式卫星任务调度流程
    × 缺乏全局性建模考虑
    下载: 导出CSV

    表  3  典型卫星任务调度算法

    算法种类 典型算法 主要优缺点
    精确求解
    算法
    线性规划 √ 可求解理论最优解
    × 仅适用于单星、单轨等小规模
    卫星调度
    × 难处理复杂的非线性约束及优化
    目标
    × 求解效率不可控
    2次规划
    动态规划
    数学规划
    求解器等
    元启发式
    算法
    进化算法 √ 全局寻优强,常用
    × 局部寻优弱,收敛慢
    邻域搜索算法 √ 局部寻优强,收敛快
    × 全局寻优弱,常借助自适应策略
    改进
    模因算法 √ 二者结合,兼具全局、局部寻
    优能力优势
    √ 多融合自适应、自学习机制,
    求解能力强
    机器学习类
    算法
    改进元启
    发式方面
    √ 算法研究热点
    √ 赋能传统元启发式,提升大规模
    调度效能
    × 机制设计复杂
    训练ANN实现
    分类或决策方面
    √ 与框架模型有机融合
    √ 可实现“端到端”调度
    × 易陷短视、局部最优
    下载: 导出CSV

    表  4  部分参考文献中所解决的卫星任务调度问题规模一览

    资源数量部分参考文献(综述类除外)
    1$ \sim $3文献[710, 1217, 25, 29, 33, 38, 39, 4250, 6165, 67, 76, 92, 98]
    4$ \sim $10文献 [6, 19, 20, 24, 26, 28, 31, 32, 36, 37, 40, 41, 53, 66, 86, 87, 94]
    11$ \sim $20文献 [22, 27, 60, 68]
    21$ \sim $50文献 [11, 69, 88, 97]
    51$ \sim $100文献 [23, 30, 70]
    >100文献 [4, 18, 21, 96, 99]
    下载: 导出CSV
  • [1] HU Fengming, XU Feng, WANG R, et al. Conceptual study and performance analysis of tandem multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
    [2] Union of Concerned Scientists. UCS satellite database[DB/OL]. https://www.ucsusa.org/resources/satellite-database, 2025.
    [3] 李宗凌, 龙腾, 赵保军, 等. 巨型星座信息系统核心功能及发展研究[J]. 宇航学报, 2024, 45(11): 1685–1700. doi: 10.3873/j.issn.1000-1328.2024.11.001.

    LI Zongling, LONG Teng, ZHAO Baojun, et al. Research on the key functions and development of mega-constellation information System[J]. Journal of Astronautics, 2024, 45(11): 1685–1700. doi: 10.3873/j.issn.1000-1328.2024.11.001.
    [4] 杜永浩, 黎磊, 徐世龙, 等. 基于智能优化算法引擎的可演进星群智能任务规划[J]. 电子与信息学报, 2025, 47(6): 1645–1657. doi: 10.11999/JEIT240974.

    DU Yonghao, LI Lei, XU Shilong, et al. Evolutionary optimization for satellite constellation task scheduling based on intelligent optimization engine[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1645–1657. doi: 10.11999/JEIT240974.
    [5] 刘立祥, 孙楚雄. 分层智能体架构下的巨星座自适应管控研究[J]. 航天技术与工程学报, 2025, 2(1): 93–101. doi: 10.3969/j.issn.2097-4701.2025.01.012.

    LIU Lixiang and SUN Chuxiong. A hierarchical agent architecture for adaptive governance and control of mega-constellations[J]. Journal of Space Technology and Engineering, 2025, 2(1): 93–101. doi: 10.3969/j.issn.2097-4701.2025.01.012.
    [6] 贺仁杰, 高鹏, 白保存, 等. 成像卫星任务规划模型、算法及其应用[J]. 系统工程理论与实践, 2011, 31(3): 411–422. doi: 10.12011/1000-6788(2011)3-411.

    HE Renjie, GAO Peng, BAI Baocun, et al. Models, algorithms and applications to the mission planning system of imaging satellites[J]. Systems Engineering-Theory & Practice, 2011, 31(3): 411–422. doi: 10.12011/1000-6788(2011)3-411.
    [7] VALICKA C G, GARCIA D, STAID A, et al. Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty[J]. European Journal of Operational Research, 2019, 275(2): 431–445. doi: 10.1016/j.ejor.2018.11.043.
    [8] TRUSZKOWSKI W, HALLOCK H, ROUFF C, et al. Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems[M]. London: Springer, 2010. doi: 10.1007/b105417.
    [9] WOLFE W J and SORENSEN S E. Three scheduling algorithms applied to the earth observing systems domain[J]. Management Science, 2000, 46(1): 148–166. doi: 10.1287/mnsc.46.1.148.15134.
    [10] WANG Haijiao, YANG Zhen, ZHOU Wugen, et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32(4): 1011–1019. doi: 10.1016/j.cja.2018.12.018.
    [11] CORDEAU J F, LAPORTE G, and MERCIER A. A unified tabu search heuristic for vehicle routing problems with time windows[J]. Journal of the Operational Research Society, 2001, 52(8): 928–936. doi: 10.1057/palgrave.jors.2601163.
    [12] CORDEAU J F and LAPORTE G. Maximizing the value of an earth observation satellite orbit[J]. Journal of the Operational Research Society, 2005, 56(8): 962–968. doi: 10.1057/palgrave.jors.2601926.
    [13] 赵琳, 王硕, 郝勇, 等. 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017, 38(6): 320654. doi: 10.7527/S1000-6893.2016.0298.

    ZHAO Lin, WANG Shuo, HAO Yong, et al. Energy-optimal in orbit mission planning for agile remote sensing satellites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 320654. doi: 10.7527/S1000-6893.2016.0298.
    [14] XIAO Yiyong, ZHANG Siyue, YANG Pei, et al. A two-stage flow-shop scheme for the multi-satellite observation and data-downlink scheduling problem considering weather uncertainties[J]. Reliability Engineering & System Safety, 2019, 188: 263–275. doi: 10.1016/j.ress.2019.03.016.
    [15] LIANG Jun, ZHU Yuehe, LUO Yazhong, et al. A precedence-rule-based heuristic for satellite onboard activity planning[J]. Acta Astronautica, 2021, 178: 757–772. doi: 10.1016/j.actaastro.2020.10.020.
    [16] 陈祥国, 武小悦. 基于解构造图的卫星数传调度ACO算法[J]. 系统工程与电子技术, 2010, 32(3): 592–597.

    CHEN Xiangguo and WU Xiaoyue. ACO algorithm of satellite data transmission scheduling based on solution construction graph[J]. Systems Engineering and Electronics, 2010, 32(3): 592–597.
    [17] LIU Xiaolu, LAPORTE G, CHEN Yingwu, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time[J]. Computers & Operations Research, 2017, 86: 41–53. doi: 10.1016/j.cor.2017.04.006.
    [18] LIU Zhehan, LIU Jinming, LIU Xiaolu, et al. Knowledge-assisted adaptive large neighbourhood search algorithm for the satellite-ground link scheduling problem[J]. Computers & Industrial Engineering, 2024, 192: 110219. doi: 10.1016/j.cie.2024.110219.
    [19] 李海, 李勇军, 刘元皓, 等. 基于ESWO的敏捷对地观测卫星任务调度算法[J]. 航空学报, 2024, 45(10): 329370. doi: 10.7527/S1000-6893.2023.29370.

    LI Hai, LI Yongjun, LIU Yuanhao, et al. ESWO-based task-scheduling algorithm for agile earth observation satellites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329370. doi: 10.7527/S1000-6893.2023.29370.
    [20] 杜永浩, 邢立宁, 陈盈果, 等. 卫星任务调度统一化建模与多策略协同求解方法[J]. 控制与决策, 2019, 34(9): 1847–1856. doi: 10.13195/j.kzyjc.2019.0111.

    DU Yonghao, XING Lining, CHEN Yingguo, et al. Unified modeling and multi-strategy collaborative optimization for satellite task scheduling[J]. Control and Decision, 2019, 34(9): 1847–1856. doi: 10.13195/j.kzyjc.2019.0111.
    [21] LI Lei, DU Yonghao, YAO Feng, et al. Learning memetic algorithm based on variable population and neighborhood for multi-complex target scheduling of large-scale imaging satellites[J]. Swarm and Evolutionary Computation, 2025, 92: 101789. doi: 10.1016/j.swevo.2024.101789.
    [22] 齐伟华, 刘晓路, 姚锋, 等. 面向智能敏捷卫星的自主任务规划与调度[J]. 计算机集成制造系统, 2024, 30(9): 3142–3153. doi: 10.13196/j.cims.2022.0112.

    QI Weihua, LIU Xiaolu, YAO Feng, et al. Autonomous task planning and scheduling method for intelligent agile satellite[J]. Computer Integrated Manufacturing Systems, 2024, 30(9): 3142–3153. doi: 10.13196/j.cims.2022.0112.
    [23] SONG Bingyu, CHEN Yingwu, YANG Qing, et al. On-board decentralized observation planning for LEO satellite constellations[J]. Algorithms, 2023, 16(2): 114. doi: 10.3390/a16020114.
    [24] LIN Zhiyuan, NI Zuyao, KUANG Linling, et al. Satellite-terrestrial coordinated multi-satellite beam hopping scheduling based on multi-agent deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 10091–10103. doi: 10.1109/TWC.2024.3368689.
    [25] YANG Weiyi, LIU Xiaolu, HE Lei, et al. Game-theoretic distributed approach for heterogeneous-cost task allocation with budget constraints[J]. Expert Systems with Applications, 2024, 255: 124721. doi: 10.1016/j.eswa.2024.124721.
    [26] 靳鹏, 李康. 基于改进合同网协议的分布式卫星资源调度[J]. 系统工程与电子技术, 2022, 44(10): 3164–3173. doi: 10.12305/j.issn.1001-506X.2022.10.20.

    JIN Peng and LI Kang. Distributed satellite resource scheduling based on improved contract network protocol[J]. Systems Engineering and Electronics, 2022, 44(10): 3164–3173. doi: 10.12305/j.issn.1001-506X.2022.10.20.
    [27] 杨唯一, 何磊, 刘晓路, 等. 面向批量应急任务的分布式卫星在线协同方法[J]. 系统工程理论与实践, 2025, 45(1): 310–325. doi: 10.12011/SETP2023-0876.

    YANG Weiyi, HE Lei, LIU Xiaolu, et al. A distributed satellite online collaboration method for batch emergency tasks[J]. Systems Engineering-Theory & Practice, 2025, 45(1): 310–325. doi: 10.12011/SETP2023-0876.
    [28] DU Yonghao, WANG Tao, XIN Bin, et al. A data-driven parallel scheduling approach for multiple agile earth observation satellites[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(4): 679–693. doi: 10.1109/TEVC.2019.2934148.
    [29] WU Jian, YAO Feng, SONG Yanjie, et al. Frequent pattern-based parallel search approach for time-dependent agile earth observation satellite scheduling[J]. Information Sciences, 2023, 636: 118924. doi: 10.1016/j.ins.2023.04.003.
    [30] CHEN Jiawei, WANG Feiran, CHEN Yingguo, et al. A generalized bilevel optimization model for large-scale task scheduling in multiple agile earth observation satellites[J]. Knowledge-Based Systems, 2025, 309: 112809. doi: 10.1016/j.knosys.2024.112809.
    [31] YANG Weiyi, HE Lei, LIU Xiaolu, et al. Onboard coordination and scheduling of multiple autonomous satellites in an uncertain environment[J]. Advances in Space Research, 2021, 68(11): 4505–4524. doi: 10.1016/j.asr.2021.09.003.
    [32] YANG Wenyuan, TANG Jun, HE Renjie, et al. A medium-term conflict detection and resolution method for open low-altitude city airspace based on temporally and spatially integrated strategies[J]. IEEE Transactions on Control Systems Technology, 2020, 28(5): 1817–1830. doi: 10.1109/TCST.2019.2925579.
    [33] WEN Jun, LIU Xiaolu, and HE Lei. Real-time online rescheduling for multiple agile satellites with emergent tasks[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1407–1420. doi: 10.23919/JSEE.2021.000120.
    [34] 杜永浩, 邢立宁, 姚锋, 等. 航天器任务调度模型、算法与通用求解技术综述[J]. 自动化学报, 2021, 47(12): 2715–2741. doi: 10.16383/j.aas.c190656.

    DU Yonghao, XING Lining, YAO Feng, et al. Survey on models, algorithms and general techniques for spacecraft mission scheduling[J]. Acta Automatica Sinica, 2021, 47(12): 2715–2741. doi: 10.16383/j.aas.c190656.
    [35] WU Jian, CHEN Yuning, HE Yongming, et al. Survey on autonomous task scheduling technology for Earth observation satellites[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1176–1189. doi: 10.23919/JSEE.2022.000141.
    [36] HE Lei, LIU Xiaolu, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100: 12–25. doi: 10.1016/j.cor.2018.06.020.
    [37] DU Yonghao, XING Lining, and CHEN Yingguo. Satellite scheduling engine: The intelligent solver for future multi-satellite management[J]. Frontiers of Engineering Management, 2022, 9(4): 683–688. doi: 10.1007/s42524-022-0222-4.
    [38] YAO Feng, DU Yonghao, LI Lei, et al. General modeling and optimization technique for real-world earth observation satellite scheduling[J]. Frontiers of Engineering Management, 2023, 10(4): 695–709. doi: 10.1007/s42524-023-0263-3.
    [39] HE Yongming, XING Lining, CHEN Yingwu, et al. A generic Markov decision process model and reinforcement learning method for scheduling agile earth observation satellites[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1463–1474. doi: 10.1109/TSMC.2020.3020732.
    [40] 吴健, 姚锋, 杜永浩, 等. 基于数据驱动的自适应并行搜索算法求解多星协同调度问题[J]. 控制与决策, 2024, 39(12): 4064–4072. doi: 10.13195/j.kzyjc.2023.0946.

    WU Jian, YAO Feng, DU Yonghao, et al. A data-driven adaptive parallel search algorithm for multiple agile satellites cooperative scheduling problem[J]. Control and Decision, 2024, 39(12): 4064–4072. doi: 10.13195/j.kzyjc.2023.0946.
    [41] WEI Luona, CHEN Yuning, CHEN Ming, et al. Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem[J]. Applied Soft Computing, 2021, 110: 107607. doi: 10.1016/j.asoc.2021.107607.
    [42] 马一凡, 赵凡宇, 王鑫, 等. 密集观测场景下的敏捷成像卫星任务规划方法[J]. 浙江大学学报: 工学版, 2021, 55(6): 1215–1224. doi: 10.3785/j.issn.1008-973X.2021.06.023.

    MA Yifan, ZHAO Fanyu, WANG Xin, et al. Agile imaging satellite task planning method for intensive observation[J]. Journal of Zhejiang University: Engineering Science, 2021, 55(6): 1215–1224. doi: 10.3785/j.issn.1008-973X.2021.06.023.
    [43] CHUN Jie, YANG Wenyuan, LIU Xiaolu, et al. Deep reinforcement learning for the agile earth observation satellite scheduling problem[J]. Mathematics, 2023, 11(19): 4059. doi: 10.3390/math11194059.
    [44] HERRMANN A and SCHAUB H. Reinforcement learning for the agile earth-observing satellite scheduling problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5235–5247. doi: 10.1109/TAES.2023.3251307.
    [45] CHEN Ming, DU Yonghao, TANG Ke, et al. Learning to construct a solution for the agile satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(10): 5949–5963. doi: 10.1109/TSMC.2024.3411640.
    [46] 王沛, 谭跃进. 多星联合对地观测调度问题的列生成算法[J]. 系统工程理论与实践, 2011, 31(10): 1932–1939. doi: 10.12011/1000-6788(2011)10-1932.

    WANG Pei and TAN Yuejin. Column generation for the earth observation satellites scheduling problem[J]. Systems Engineering-Theory & Practice, 2011, 31(10): 1932–1939. doi: 10.12011/1000-6788(2011)10-1932.
    [47] CHU Xiaogeng, CHEN Yuning, and TAN Yuejin. An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling[J]. Advances in Space Research, 2017, 60(9): 2077–2090. doi: 10.1016/j.asr.2017.07.026.
    [48] PENG Guansheng, SONG Guopeng, XING Lining, et al. An exact algorithm for agile earth observation satellite scheduling with time-dependent profits[J]. Computers & Operations Research, 2020, 120: 104946. doi: 10.1016/j.cor.2020.104946.
    [49] CHEN Ming, CHEN Yuning, DU Yonghao, et al. Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization[J]. Knowledge-Based Systems, 2020, 207: 106366. doi: 10.1016/j.knosys.2020.106366.
    [50] PENG Guansheng, SONG Guopeng, HE Yongming, et al. Solving the agile earth observation satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1614–1625. doi: 10.1109/TSMC.2020.3031738.
    [51] CHEN Xiaoyu, REINELT G, DAI Guangming, et al. A mixed integer linear programming model for multi-satellite scheduling[J]. European Journal of Operational Research, 2019, 275(2): 694–707. doi: 10.1016/j.ejor.2018.11.058.
    [52] 白保存, 贺仁杰, 李菊芳, 等. 卫星单轨任务合成观测问题及其动态规划算法[J]. 系统工程与电子技术, 2009, 31(7): 1738–1742. doi: 10.3321/j.issn:1001-506X.2009.07.046.

    BAI Baocun, HE Renjie, LI Jufang, et al. Satellite orbit task merging problem and its dynamic programming algorithm[J]. Systems Engineering and Electronics, 2009, 31(7): 1738–1742. doi: 10.3321/j.issn:1001-506X.2009.07.046.
    [53] WU Guohua, LUO Qizhang, DU Xiao, et al. Ensemble of metaheuristic and exact algorithm based on the divide-and-conquer framework for multisatellite observation scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4396–4408. doi: 10.1109/TAES.2022.3160993.
    [54] WANG Pei, REINELT G, GAO Peng, et al. A model, a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation[J]. Computers & Industrial Engineering, 2011, 61(2): 322–335. doi: 10.1016/j.cie.2011.02.015.
    [55] 靳肖闪, 李军, 王钧, 等. 基于随机搜索与松弛方法的多卫星联合成像优化调度研究[J]. 兵工学报, 2009, 30(1): 49–55.
    [56] RIBEIRO G M, CONSTANTINO M F, and LORENA L A N. Strong formulation for the spot 5 daily photograph scheduling problem[J]. Journal of Combinatorial Optimization, 2010, 20(4): 385–398. doi: 10.1007/s10878-009-9215-z.
    [57] LIN Weicheng, LIAO Dayin, LIU Chungyang, et al. Daily imaging scheduling of an earth observation satellite[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35(2): 213–223. doi: 10.1109/TSMCA.2005.843380.
    [58] MARINELLI F, NOCELLA S, ROSSI F, et al. A Lagrangian heuristic for satellite range scheduling with resource constraints[J]. Computers & Operations Research, 2011, 38(11): 1572–1583. doi: 10.1016/j.cor.2011.01.016.
    [59] 石鑫, 邢孟道, 张金松, 等. 基于改进遗传算法的SAR多星协同复杂区域观测规划[J]. 遥感学报, 2024, 28(7): 1822–1834. doi: 10.11834/jrs.20243258.

    SHI Xin, XING Mengdao, ZHANG Jinsong, et al. SAR multi-satellite collaborative complex area observation planning based on improved genetic algorithm[J]. National Remote Sensing Bulletin, 2024, 28(7): 1822–1834. doi: 10.11834/jrs.20243258.
    [60] ZHIBO E, SHI Renhe, GAN Lan, et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178: 645–657. doi: 10.1016/j.actaastro.2020.08.041.
    [61] SONG Yanjie, OU Junwei, SUGANTHAN P N, et al. Learning adaptive genetic algorithm for earth electromagnetic satellite scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9010–9025. doi: 10.1109/TAES.2023.3312626.
    [62] SONG Yanjie, OU Junwei, PEDRYCZ W, et al. Generalized model and deep reinforcement learning-based evolutionary method for multitype satellite observation scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(4): 2576–2589. doi: 10.1109/TSMC.2023.3345928.
    [63] SONG Yanjie, WEI Luona, YANG Qing, et al. RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101236. doi: 10.1016/j.swevo.2023.101236.
    [64] 耿远卓, 郭延宁, 李传江, 等. 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.

    GENG Yuanzhuo, GUO Yanning, LI Chuanjiang, et al. Optimal mission planning with task clustering for intensive point targets observation of staring mode agile satellite[J]. Control and Decision, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.
    [65] WANG He, HUANG Weiquan, MAGNÚSSON S, et al. A strategy fusion-based multiobjective optimization approach for agile earth observation satellite scheduling problem[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5930214. doi: 10.1109/TGRS.2024.3472749.
    [66] HILTON S, THANGAVEL K, GARDI A, et al. Intelligent mission planning for autonomous distributed satellite systems[J]. Acta Astronautica, 2024, 225: 857–869. doi: 10.1016/j.actaastro.2024.08.050.
    [67] 陈旺, 邵庆龙, 周晓, 等. 海洋一号卫星观测任务规划算法设计及系统应用[J]. 中国空间科学技术, 2024, 44(2): 145–153. doi: 10.16708/j.cnki.1000-758X.2024.0031.

    CHEN Wang, SHAO Qinglong, ZHOU Xiao, et al. Algorithm design and system application of HY-1 satellite observation mission planning[J]. Chinese Space Science and Technology, 2024, 44(2): 145–153. doi: 10.16708/j.cnki.1000-758X.2024.0031.
    [68] GU Yi, HAN Chao, CHEN Yuhan, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1800–1815. doi: 10.1109/TAES.2022.3205565.
    [69] WU Xiande, YANG Yuheng, SUN Yuqi, et al. Dynamic regional splitting planning of remote sensing satellite swarm using parallel genetic PSO algorithm[J]. Acta Astronautica, 2023, 204: 531–551. doi: 10.1016/j.actaastro.2022.09.020.
    [70] LONG Xi, CAI Weiwei, YANG Leping, et al. Improved particle swarm optimization with reverse learning and neighbor adjustment for space surveillance network task scheduling[J]. Swarm and Evolutionary Computation, 2024, 85: 101482. doi: 10.1016/j.swevo.2024.101482.
    [71] 张佳唯, 邢立宁, 张玮, 等. 基于统一资源编码的成像卫星联合任务规划算法框架[J]. 控制与决策, 2022, 37(6): 1497–1504. doi: 10.13195/j.kzyjc.2020.1718.

    ZHANG Jiawei, XING Lining, ZHANG Wei, et al. A united mission planning algorithm framework based on uniform resource encoding for imaging satellites[J]. Control and Decision, 2022, 37(6): 1497–1504. doi: 10.13195/j.kzyjc.2020.1718.
    [72] WU Jian, LU Fang, ZHANG Jiawei, et al. Design of task priority model and algorithm for imaging observation problem[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 321–334. doi: 10.23919/JSEE.2020.000010.
    [73] 周毅荣, 陈浩, 李龙梅, 等. 一种基于免疫遗传的卫星数传调度方法[J]. 小型微型计算机系统, 2015, 36(12): 2725–2729. doi: 10.20009/j.cnki.21-1106/tp.2015.12.020.

    ZHOU Yirong, CHEN Hao, LI Longmei, et al. Immune genetic algorithm for satellite data transmission scheduling[J]. Journal of Chinese Computer Systems, 2015, 36(12): 2725–2729. doi: 10.20009/j.cnki.21-1106/tp.2015.12.020.
    [74] KIM H and CHANG Y K. Mission scheduling optimization of SAR satellite constellation for minimizing system response time[J]. Aerospace Science and Technology, 2015, 40: 17–32. doi: 10.1016/j.ast.2014.10.006.
    [75] LI Jun, LI Jun, CHEN Hao, et al. A data transmission scheduling algorithm for rapid-response earth-observing operations[J]. Chinese Journal of Aeronautics, 2014, 27(2): 349–364. doi: 10.1016/j.cja.2014.02.014.
    [76] NIU Xiaonan, TANG Hong, and WU Lixin. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm[J]. International Journal of Disaster Risk Reduction, 2018, 28: 813–825. doi: 10.1016/j.ijdrr.2018.02.013.
    [77] XHAFA F, SUN Junzi, BAROLLI A, et al. Genetic algorithms for satellite scheduling problems[J]. Mobile Information Systems, 2012, 8(4): 351–377. doi: 10.1109/bwcca.2013.58.
    [78] XHAFA F, HERRERO X, BAROLLI A, et al. Evaluation of struggle strategy in Genetic Algorithms for ground stations scheduling problem[J]. Journal of Computer and System Sciences, 2013, 79(7): 1086–1100. doi: 10.1016/j.jcss.2013.01.023.
    [79] TANG Yinyin, WANG Yueke, CHEN Jianyun, et al. Uplink scheduling of navigation constellation based on genetic algorithm[C]. 2016 IEEE 13th International Conference on Signal Processing, Chengdu, China, 2017: 1124–1129. doi: 10.1109/ICSP.2016.7878003.
    [80] DU Yonghao, XING Lining, ZHANG Jiawei, et al. MOEA based memetic algorithms for multi-objective satellite range scheduling problem[J]. Swarm and Evolutionary Computation, 2019, 50: 100576. doi: 10.1016/j.swevo.2019.100576.
    [81] 邱涤珊, 郭浩, 贺川, 等. 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34(4): 882–889. doi: 10.7527/S1000-6893.2013.0149.

    QIU Dishan, GUO Hao, HE Chuan, et al. Intensive task scheduling method for multi-agile imaging satellites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 882–889. doi: 10.7527/S1000-6893.2013.0149.
    [82] 严珍珍, 陈英武, 邢立宁. 基于改进蚁群算法设计的敏捷卫星调度方法[J]. 系统工程理论与实践, 2014, 34(3): 793–801. doi: 10.12011/1000-6788(2014)3-793.

    YAN Zhenzhen, CHEN Yingwu, and XING Lining. Agile satellite scheduling based on improved ant colony algorithm[J]. Systems Engineering-Theory & Practice, 2014, 34(3): 793–801. doi: 10.12011/1000-6788(2014)3-793.
    [83] 陈宇宁, 邢立宁, 陈英武. 基于蚁群算法的灵巧卫星调度[J]. 科学技术与工程, 2011, 11(3): 484–489,502. doi: 10.3969/j.issn.1671-1815.2011.03.012.

    CHEN Yuning, XING Lining, and CHEN Yingwu. Scheduling of agile satellites based on ant colony algorithm[J]. Science Technology and Engineering, 2011, 11(3): 484–489,502. doi: 10.3969/j.issn.1671-1815.2011.03.012.
    [84] 何磊, 刘晓路, 陈英武, 等. 面向敏捷卫星任务规划的云层建模及处理方法[J]. 系统工程与电子技术, 2016, 38(4): 852–858. doi: 10.3969/j.issn.1001-506X.2016.04.19.

    HE Lei, LIU Xiaolu, CHEN Yingwu, et al. Cloud modeling and processing method for agile observing satellite mission planning[J]. Systems Engineering and Electronics, 2016, 38(4): 852–858. doi: 10.3969/j.issn.1001-506X.2016.04.19.
    [85] HE Lei, DE WEERDT M, and YORKE-SMITH N. Time/sequence-dependent scheduling: The design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm[J]. Journal of Intelligent Manufacturing, 2020, 31(4): 1051–1078. doi: 10.1007/s10845-019-01518-4.
    [86] YANG Weiyi, HE Lei, LIU Xiaolu, et al. A fast insertion tabu search with conflict-avoidance heuristic for the multisatellite multimode crosslink scheduling problem[J]. Tsinghua Science and Technology, 2024, 29(3): 843–862. doi: 10.26599/TST.2023.9010064.
    [87] WU Guohua, WANG Huilin, PEDRYCZ W, et al. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy[J]. Computers & Industrial Engineering, 2017, 113: 576–588. doi: 10.1016/j.cie.2017.09.050.
    [88] WU Xiande, YANG Yuheng, XIE Yaen, et al. Multiregion mission planning by satellite swarm using simulated annealing and neighborhood search[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1416–1439. doi: 10.1109/TAES.2023.3337066.
    [89] 贺仁杰, 谭跃进. 具有时间窗口约束的并行机床调度问题研究[J]. 系统工程, 2004, 22(5): 18–22. doi: 10.3969/j.issn.1001-4098.2004.05.004.

    HE Renjie and TAN Yuejin. On parallel machine scheduling problem with time windows[J]. Systems Engineering, 2004, 22(5): 18–22. doi: 10.3969/j.issn.1001-4098.2004.05.004.
    [90] 郑起存, 岳海霞, 刘大成, 等. 基于区域目标网格化的多星协同观测方法[J]. 中国科学院大学学报(中英文), 2024, 41(6): 803–809. doi: 10.7523/j.ucas.2023.019.

    ZHENG Qicun, YUE Haixia, LIU Dacheng, et al. Multi-satellite cooperative observation method based on area target gridding[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(6): 803–809. doi: 10.7523/j.ucas.2023.019.
    [91] 丁祎男, 田科丰, 王淑一. 基于遗传禁忌混合算法的敏捷卫星任务规划[J]. 空间控制技术与应用, 2019, 45(6): 27–32. doi: 10.3969/j.issn.1674-1579.2019.06.004.

    DING Yinan, TIAN Kefeng, and WANG Shuyi. Mission scheduling for agile earth observation satellites based on genetic-tabu hybrid algorithm[J]. Aerospace Control and Application, 2019, 45(6): 27–32. doi: 10.3969/j.issn.1674-1579.2019.06.004.
    [92] 李君, 邢立宁, 彭观胜, 等. 考虑多类型时间依赖资源约束的敏捷卫星调度优化[J]. 控制理论与应用, 2024, 41(6): 1038–1046. doi: 10.7641/CTA.2023.20914.

    LI Jun, XING Lining, PENG Guansheng, et al. The agile earth observation satellite scheduling with multiple resource constraints[J]. Control Theory & Applications, 2024, 41(6): 1038–1046. doi: 10.7641/CTA.2023.20914.
    [93] WU Jian, SONG Bingyu, ZHANG Guoting, et al. A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time[J]. Computers & Industrial Engineering, 2022, 174: 108823. doi: 10.1016/j.cie.2022.108823.
    [94] XIANG S, WANG L, XING L, ET al. Knowledge-based memetic algorithm for joint task planning of multi-platform earth observation system[J]. Computers & Industrial Engineering, 2021, 160: 107559
    [95] 刘建银, 王忠伟. 面向森林资源观测的成像卫星任务规划算法设计[J]. 中南林业科技大学学报, 2018, 38(10): 41–46. doi: 10.14067/j.cnki.1673-923x.2018.10.007.

    LIU Jianyin and WANG Zhongwei. Research on the tasks scheduling algorithm for imaging satellite observing forest area[J]. Journal of Central South University of Forestry & Technology, 2018, 38(10): 41–46. doi: 10.14067/j.cnki.1673-923x.2018.10.007.
    [96] 李庥甜, 王凌, 陈英武, 等. 基于自适应大邻域搜索的多场景多卫星任务规划方法[J]. 系统仿真学报, 2025, 37(7): 1836–1847. doi: 10.16182/j.issn1004731x.joss.25-0095.

    LI Xiutian, WANG Ling, CHEN Yingwu, et al. Multi-scenario multi-satellite mission planning method based on adaptive large neighborhood search[J]. Journal of System Simulation, 2025, 37(7): 1836–1847. doi: 10.16182/j.issn1004731x.joss.25-0095.
    [97] DU Yonghao, WANG Ling, XING Lining, et al. Data-driven heuristic assisted memetic algorithm for efficient inter-satellite link scheduling in the BeiDou Navigation Satellite System[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(11): 1800–1816. doi: 10.1109/JAS.2021.1004174.
    [98] SONG Yanjie, SUGANTHAN P N, PEDRYCZ W, et al. Energy-efficient satellite range scheduling using a reinforcement learning-based memetic algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4073–4087. doi: 10.1109/TAES.2024.3371964.
    [99] 陈珂昕, 刘晓路, 淳洁, 等. 考虑多类型任务的成像卫星群调度模型与算法[J]. 控制与决策, 2025, 40(6): 1913–1921. doi: 10.13195/j.kzyjc.2024.0897.

    CHEN Kexin, LIU Xiaolu, CHUN Jie, et al. Model and algorithm for scheduling imaging satellite constellations based on multi-type tasks[J]. Control and Decision, 2025, 40(6): 1913–1921. doi: 10.13195/j.kzyjc.2024.0897.
    [100] 刘正, 熊伟, 简平, 等. 基于Transformer的成像卫星星群调度方法研究[C]. 第六届体系工程学术会议论文集—体系工程与高质量发展. 昆明, 2024. doi: 10.26914/c.cnkihy.2024.028403.

    LIU Zheng, XIONG Wei, JIAN Ping, et al. Study on imaging satellite swarm scheduling method based on Transformer[C]. Kunming, China, 2024. doi: 10.26914/c.cnkihy.2024.028403.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  21
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-30
  • 修回日期:  2026-01-09
  • 网络出版日期:  2026-01-13

目录

    /

    返回文章
    返回