高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向通信与感知一体化系统的物理层密钥生成方法

刘柯欣 黄开枝 裴杏龙 金梁 陈亚军

刘柯欣, 黄开枝, 裴杏龙, 金梁, 陈亚军. 面向通信与感知一体化系统的物理层密钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT251034
引用本文: 刘柯欣, 黄开枝, 裴杏龙, 金梁, 陈亚军. 面向通信与感知一体化系统的物理层密钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT251034
LIU Kexin, HUANG Kaizhi, PEI Xinglong, JIN Liang, CHEN Yajun. Physical Layer Key Generation Method for Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251034
Citation: LIU Kexin, HUANG Kaizhi, PEI Xinglong, JIN Liang, CHEN Yajun. Physical Layer Key Generation Method for Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251034

面向通信与感知一体化系统的物理层密钥生成方法

doi: 10.11999/JEIT251034 cstr: 32379.14.JEIT251034
基金项目: 国家重点研发计划(2022YFB2902202, 2022YFB2904201),国家自然科学基金(U22A2001)
详细信息
    作者简介:

    刘柯欣:女,博士,研究方向为无线通信安全,通信感知一体化等

    黄开枝:女,教授,研究方向为无线通信安全,通信感知一体化等

    裴杏龙:男,博士,研究方向为深度学习,强化学习,计算机网络,信息安全等

    金梁:男,教授,研究方向为无线通信安全,电磁信息论等

    陈亚军:男,博士,研究方向为无线通信安全,物理层安全传输等

    通讯作者:

    黄开枝 huangkaizhi@tsinghua.org.cn

  • 中图分类号: TN918.4

Physical Layer Key Generation Method for Integrated Sensing and Communication Systems

Funds: The National Key RD Program of China (2022YFB2902202, 2022YFB2902201), The National Natural Science Foundation of China (U22A2001)
  • 摘要: 针对通信与感知一体化(ISAC)系统中存在的信息泄露问题,该文提出一种面向ISAC的物理层密钥生成(PLKG)方法。首先,提出一种面向ISAC系统的PLKG协议,并推导了总密钥生成速率(SKGR) 和感知精度克拉美-罗界(CRB)的闭式表达式。接着,在感知精度的约束下,建立了一个总密钥生成速率SKGR最大化问题。最后,提出一种基于双延迟深度确定性策略梯度(TD3)的联合通信与感知波束赋形算法,进一步提升系统安全性。仿真结果表明,所提方法相较于基准方法具有更好的有效性和优越性。
  • 图  1  系统模型图

    图  2  面向ISAC系统的PLKG协议流程

    图  3  网络拓扑图

    图  4  不同算法对比图

    图  5  不同天线数量下SKGR与发射功率的关系

    图  6  不同$ d_{\mathrm{ae}} $下SKGR与发射功率的关系

    1  基于TD3的RL算法[27]

     随机初始化两个评论家网络$ {Q}_{\theta 1} $,$ {Q}_{\theta 2} $和一个演员网络$ {\pi }_{\phi } $的参数
     初始化目标网络参数$ \theta _{1}^{\prime}\leftarrow {\theta }_{1}, \theta _{2}^{\prime}\leftarrow {\theta }_{2}, {\phi }^{\prime}\leftarrow \phi $
     初始化经验回放缓冲区$ \mathcal{D} $
     for每个时间步$ t=1 $to$ T $:
      根据当前策略添加探索噪声选择动作:
      $ a\sim {\text{π} }_{\phi }(s)+\epsilon , \epsilon \sim \mathcal{N}(0,\sigma ) $,并观测奖励$ r $和新状态$ s' $
      将转移元组$ \left(s,a,r,s'\right) $存入回放缓冲区$ \mathcal{D} $
      从$ \mathcal{D} $中采样$ N $个转移元组的小批量数据
      为目标策略的输出添加平滑噪声:
      $ \tilde{a}\leftarrow {\pi }_{{{\phi }^{\prime}}}({s}^{\prime})+\epsilon , \epsilon \sim \mathrm{clip}(\mathcal{N}(0,\tilde{\sigma }),-c,c) $
      计算目标$ Q $值$ y\leftarrow r+\gamma {\min }_{i=1,2}{Q}_{{\theta _{i}^{\prime}}}({s}^{\prime},\tilde{a}) $
      通过最小化均方误差来更新两个评论家网络:
      $ {\theta }_{i}\leftarrow {\mathrm{argmin}}_{{{\theta }_{i}}}{N}^{-1}\sum{\left(y-{Q}_{{{\theta }_{i}}}(s,a)\right)}^{2} $
      if $ t\text{mod}d $(即每$ d $步),则执行以下操作:
       通过确定性策略梯度更新演员网络参数:
       $ {{\text{∇}}}_{\phi }J(\phi )={N}^{-1}\sum{{\text{∇}}}_{a}{Q}_{{{\theta }_{1}}}(s,a){|}_{a={{\text{π} }_{\phi }}(s)}{{\text{∇}}}_{\phi }{\pi }_{\phi }(s) $
       软更新目标网络参数:
       $ \theta _{i}^{\prime}\leftarrow \tau {\theta }_{i}+(1-\tau )\theta _{i}^{\prime} $
       $ {\phi }^{\prime}\leftarrow \tau \phi +(1-\tau ){\phi }^{\prime} $
      End if
     End for
    下载: 导出CSV

    表  1  开发网络的主要参数设置[27]

    参数数值
    学习率3e-4
    折扣因子0.99
    梯度步数20
    目标策略噪声0.60
    回合数100
    每回合步数512
    下载: 导出CSV
  • [1] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [2] GHOSH A, WILD T, DU Jinfeng, et al. A unified future: Integrated sensing and communication (ISAC) in 6G[J]. IEEE Journal of Selected Topics in Electromagnetics, Antennas and Propagation, 2025, 1(1): 365–374. doi: 10.1109/JSTEAP.2025.3603540.
    [3] WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [4] LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173.
    [5] 林粤伟, 张奇勋, 尉志青, 等. 通信感知一体化硬件设计——现状与展望[J]. 电子与信息学报, 2025, 47(1): 1–21. doi: 10.11999/JEIT240012.

    LIN Yuewei, ZHANG Qixun, WEI Zhiqing, et al. Status and prospect of hardware design on integrated sensing and communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 1–21. doi: 10.11999/JEIT240012.
    [6] OSORIO D P M, BARUA B, BESSER K L, et al. The rise of networked ISAC: Emerging aspects and challenges[J]. IEEE Open Journal of the Communications Society, 2025, 6: 5072–5091. doi: 10.1109/OJCOMS.2025.3575729.
    [7] QU Kaiqian, YE Jia, LI Xuran, et al. Privacy and security in ubiquitous integrated sensing and communication: Threats, challenges and future directions[J]. IEEE Internet of Things Magazine, 2024, 7(4): 52–58. doi: 10.1109/IOTM.001.2300180.
    [8] MELKI R, NOURA H N, MANSOUR M M, et al. A survey on OFDM physical layer security[J]. Physical Communication, 2019, 32: 1–30. doi: 10.1016/j.phycom.2018.10.008.
    [9] MATSUMINE T, OCHIAI H, and SHIKATA J. Physical layer security for integrated sensing and communication: A survey[J]. IEEE Open Journal of the Communications Society, 2025, 6: 6690–6743. doi: 10.1109/OJCOMS.2025.3598312.
    [10] KIHERO A B, FURQAN H M, SAHIN M M, et al. 6G and beyond wireless channel characteristics for physical layer security: Opportunities and challenges[J]. IEEE Wireless Communications, 2024, 31(3): 295–301. doi: 10.1109/MWC.002.2300002.
    [11] ILLI E, QARAQE M, ALTHUNIBAT S, et al. Physical layer security for authentication, confidentiality, and malicious node detection: A paradigm shift in securing IoT networks[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 347–388. doi: 10.1109/COMST.2023.3327327.
    [12] ZHANG Wei, CHEN Jian, KUO Yonghong, et al. Artificial-noise-aided optimal beamforming in layered physical layer security[J]. IEEE Communications Letters, 2019, 23(1): 72–75. doi: 10.1109/LCOMM.2018.2881182.
    [13] LIU Peng, FEI Zesong, WANG Xinyi, et al. Outage constrained robust secure beamforming in integrated sensing and communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2260–2264. doi: 10.1109/LWC.2022.3198683.
    [14] SU Nanchi, LIU Fan, and MASOUROS C. Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3162–3174. doi: 10.1109/TWC.2023.3306029.
    [15] LIU Yuemin, LIU Xin, LIU Zechen, et al. Secure rate maximization for ISAC-UAV assisted communication amidst multiple eavesdroppers[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15843–15847. doi: 10.1109/TVT.2024.3412805.
    [16] YE Chunxuan, MATHUR S, REZNIK A, et al. Information-theoretically secret key generation for fading wireless channels[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 240–254. doi: 10.1109/TIFS.2010.2043187.
    [17] CHEN Chan and JENSEN M A. Secret key establishment using temporally and spatially correlated wireless channel coefficients[J]. IEEE Transactions on Mobile Computing, 2011, 10(2): 205–215. doi: 10.1109/TMC.2010.114.
    [18] JORSWIECK E A, WOLF A, and ENGELMANN S. Secret key generation from reciprocal spatially correlated MIMO channels[C]. 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, USA, 2013: 1245–1250. doi: 10.1109/GLOCOMW.2013.6825164.
    [19] ZHANG Junqing, MARSHALL A, WOODS R, et al. Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers[J]. IEEE Transactions on Communications, 2016, 64(6): 2578–2588. doi: 10.1109/TCOMM.2016.2552165.
    [20] DWIVEDI S, ZOLI M, BARRETO A N, et al. Secure joint communications and sensing using chirp modulation[C]. 2020 2nd 6G Wireless Summit (6G SUMMIT). Levi, Finland, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083884.
    [21] MITEV M, MAYYA A, and CHORTI A. Joint secure communication and sensing in 6G networks[M]. MOHAPATRA P, PAPPAS N, CHORTI A, et al. Physical-layer Security for 6G. Electrical and Electronics Engineers, Inc. , 2024: 203–220. doi: 10.1002/9781394170944.ch10.
    [22] REN Zixiang, ZHANG Siyao, LI Xinmin, et al. Secure communications in near-field ISCAP systems with extremely large-scale antenna arrays[C]. 2024 19th International Symposium on Wireless Communication Systems (ISWCS), Rio de Janeiro, Brazil, 2024: 1–6. doi: 10.1109/ISWCS61526.2024.10639091.
    [23] PHAN A H, TUAN H D, KHA H H, et al. Nonsmooth optimization for efficient beamforming in cognitive radio multicast transmission[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 2941–2951. doi: 10.1109/TSP.2012.2189857.
    [24] WU Huici, FANG Yi, LI Na, et al. Secret key generation with untrusted internal eavesdropper: Token-based anti-eavesdropping[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 2523–2537. doi: 10.1109/TIFS.2025.3542959.
    [25] QIN Dongrun and DING Zhi. Exploiting multi-antenna non-reciprocal channels for shared secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2693–2705. doi: 10.1109/TIFS.2016.2594143.
    [26] QU Guanjin, WU Huaming, LI Ruidong, et al. DMRO: A deep meta reinforcement learning-based task offloading framework for edge-cloud computing[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3448–3459. doi: 10.1109/TNSM.2021.3087258.
    [27] FUJIMOTO S, HOOF H, and MEGER D. Addressing function approximation error in actor-critic methods[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1587–1596.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  20
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-30
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回