高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向动态队形优化的无人机编队辐射源定位方法研究

吴苏洁 吴彬彬 杨宁 王桁 郭道省 顾川

吴苏洁, 吴彬彬, 杨宁, 王桁, 郭道省, 顾川. 面向动态队形优化的无人机编队辐射源定位方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT251023
引用本文: 吴苏洁, 吴彬彬, 杨宁, 王桁, 郭道省, 顾川. 面向动态队形优化的无人机编队辐射源定位方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT251023
WU Sujie, WU Binbin, YANG Ning, WANG Heng, GUO Daoxing, GU Chuan. Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251023
Citation: WU Sujie, WU Binbin, YANG Ning, WANG Heng, GUO Daoxing, GU Chuan. Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251023

面向动态队形优化的无人机编队辐射源定位方法研究

doi: 10.11999/JEIT251023 cstr: 32379.14.JEIT251023
详细信息
    作者简介:

    吴苏洁:女,博士研究生,研究方向为无人机路径规划、自主导航

    吴彬彬:男,博士,研究方向为无人机自主导航、信号处理

    杨宁:女,博士,研究方向为辐射源个体识别、机器学习

    王桁:女,硕士生导师,研究方向为卫星通信、电磁频谱构建

    郭道省:男,博士生导师,研究方向为无人机自主导航、卫星通信、无线通信

    顾川:男,博士研究生,研究方向为无人机路径规划、自主导航

    通讯作者:

    郭道省 xyzgfg@163.com

  • 中图分类号: TN91; TP18

Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization

  • 摘要: 在障碍物密集、结构复杂的城市场景中,无人机编队进行辐射源定位常受到信号衰减、多径效应和建筑物遮挡等因素的影响,导致现有方法定位精度不高。针对这一问题,本文提出了一种基于动态队形调整的无人机编队辐射源定位方法。该方法通过优化无人机编队的几何构型,有效降低路径损耗与干扰,从而提升定位性能。具体而言,系统利用接收信号强度实时评估信号质量,并在编队运动过程中根据环境变化自适应调整队形,以优化信号传播路径。同时,结合几何定位精度因子、均方根误差等指标,对编队结构进行动态优化,从而提高距离估计与定位解算的可靠性。实验结果表明,相比传统方法,该方法在复杂城市环境中能够更快收敛并显著提升定位精度,定位误差降低了80%以上。同时,所提方法能够有效适应动态环境变化,展现出较强的鲁棒性与实用价值。
  • 图  1  基于无人机编队的辐射源定位系统模型图

    图  2  无人机编队队形动态调整示意图

    图  3  无人机编队变换过程

    图  4  无人机编队飞行路径

    图  5  不同辐射源定位误差随时间变化的分析

    图  6  不同队形下定位误差对比分析

    图  7  不同定位方法的误差变化与空间分布对比

  • [1] AMARCHA F A, CHEHRI A, JAKIMI A, et al. Drones optimization for public transportation safety: Enhancing surveillance and efficiency in smart cities[C]. Proceedings of the 2024 IEEE World Forum on Public Safety Technology (WFPST), Herndon, USA, 2024: 153–158. doi: 10.1109/WFPST58552.2024.00023.
    [2] LIU Tao and ZHANG Bohan. A UAV-based remote sensing image automatic monitoring system empowered by artificial intelligence[C]. Proceedings of the 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS), Hassan, India, 2024: 1–5. doi: 10.1109/IACIS61494.2024.10721807.
    [3] LIU Haishi, TSANG Y P, LEE C K M, et al. Internet of UAVs to automate search and rescue missions in post-disaster for smart cities[C]. Proceedings of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2024: 614–619. doi: 10.1109/IV55156.2024.10588641.
    [4] ZHANG Junqi, LU Yehao, WU Yunzhe, et al. PSO-based sparse source location in large-scale environments with a UAV swarm[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5249–5258. doi: 10.1109/TITS.2023.3237570.
    [5] REN Mingyuan, FU Xiuwen, PACE P, et al. Collaborative data acquisition for UAV-aided IoT based on time-balancing scheduling[J]. IEEE Internet of Things Journal, 2024, 11(8): 13660–13676. doi: 10.1109/JIOT.2023.3339136.
    [6] YE Xinzhe, XUE Wei, CHEN Xiaolong, et al. Cauchy kernel-based AEKF for UAV target tracking via digital ubiquitous radar under the sea–air background[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3506605. doi: 10.1109/LGRS.2024.3402687.
    [7] SUH U S, HAN S K, and RA W S. Optimal formation of UAV swarm for TDOA-based passive target tracking[J]. Journal of Electrical Engineering & Technology, 2022, 17(1): 551–564. doi: 10.1007/s42835-021-00872-9.
    [8] KANG Zhen, DENG Yihang, YAN Hao, et al. A new method of UAV swarm formation flight based on AOA azimuth-only passive positioning[J]. Drones, 2024, 8(6): 243. doi: 10.3390/drones8060243.
    [9] WANG Yubing, WANG Weijia, ZHANG Xudong, et al. The joint phantom track deception and TDOA/FDOA localization using UAV swarm without prior knowledge of radars' precise locations[J]. Electronics, 2022, 11(10): 1577. doi: 10.3390/electronics11101577.
    [10] ZHANG Yuan, QI Juntong, WU Chong, et al. Indoor UAV formation system based on UWB positioning[C]. Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 2023: 8545–8550. doi: 10.23919/CCC58697.2023.10240727.
    [11] GÜZEY N. RF source localization using multiple UAVs through a novel geometrical RSSI approach[J]. Drones, 2022, 6(12): 417. doi: 10.3390/drones6120417.
    [12] CHEN Siyuan, ZENG Xiangding, LAEFER D F, et al. Flight path setting and data quality assessments for unmanned-aerial-vehicle-based photogrammetric bridge deck documentation[J]. Sensors, 2023, 23(16): 7159. doi: 10.3390/s23167159.
    [13] 滕怀亮, 李本威, 高永, 等. 基于飞行数据的无人机平飞动作质量评价模型[J]. 北京航空航天大学学报, 2019, 45(10): 2108–2114. doi: 10.13700/J.BH.1001-5965.2019.0029.

    TENG Huailiang, LI Benwei, GAO Yong, et al. Quality evaluation model of unmanned aerial vehicle's horizontal flight maneuver based on flight data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2108–2114. doi: 10.13700/J.BH.1001-5965.2019.0029.
    [14] 屈耀红, 张峰, 谷任能, 等. 基于距离测量的多无人机协同目标定位方法[J]. 西北工业大学学报, 2019, 37(2): 266–272. doi: 10.3969/j.issn.1000-2758.2019.02.008.

    QU Yaohong, ZHANG Feng, GU Renneng, et al. Target cooperative location method of multi-UAV based on pseudo range measurement[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 266–272. doi: 10.3969/j.issn.1000-2758.2019.02.008.
    [15] QUAN Lun, YIN Longji, XU Chao, et al. Distributed swarm trajectory optimization for formation flight in dense environments[C]. Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 4979–4985. doi: 10.1109/ICRA46639.2022.9812050.
    [16] ZHU Jiandong, DING Ting, and QIAO Lijuan. A closed-form solution for 3D source localization using angles and Doppler shifted frequencies[J]. IEEE Access, 2023, 11: 89581–89590. doi: 10.1109/ACCESS.2023.3305961.
    [17] MA Wen and ZHU Hongyan. Source localization using TDOA with sensor position errors based on constrained total least squares and ADMM[C]. Proceedings of the 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 2024: 1–8. doi: 10.23919/FUSION59988.2024.10706425.
  • 加载中
图(7)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-08
  • 录用日期:  2025-12-08
  • 网络出版日期:  2025-12-16

目录

    /

    返回文章
    返回