高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接收端随机倾斜场景下CNN-MLP多特征融合室内可见光定位方法

贾科军 王剑 毛俪霏 尤威 黄梓洋 彭铎

贾科军, 王剑, 毛俪霏, 尤威, 黄梓洋, 彭铎. 接收端随机倾斜场景下CNN-MLP多特征融合室内可见光定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT251021
引用本文: 贾科军, 王剑, 毛俪霏, 尤威, 黄梓洋, 彭铎. 接收端随机倾斜场景下CNN-MLP多特征融合室内可见光定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT251021
JIA Kejun, WANG Jian, MAO Lifei, YOU Wei, HUANG Ziyang, PENG Duo. Indoor Visible Light Positioning Based on CNN–MLP Multi-Feature Fusion under Random Receiver Tilt Conditions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251021
Citation: JIA Kejun, WANG Jian, MAO Lifei, YOU Wei, HUANG Ziyang, PENG Duo. Indoor Visible Light Positioning Based on CNN–MLP Multi-Feature Fusion under Random Receiver Tilt Conditions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251021

接收端随机倾斜场景下CNN-MLP多特征融合室内可见光定位方法

doi: 10.11999/JEIT251021 cstr: 32379.14.JEIT251021
基金项目: 国家自然科学基金(62265010),甘肃省自然科学基金(22JR5RA276, 23YFGA0062)、兰州理工大学博士科研启动经费项目(061903)
详细信息
    作者简介:

    贾科军:男,教授,研究可见光通信理论与技术

    王剑:男,硕士生,研究可见光定位技术

    毛俪霏:女,讲师,研究方向为通信工程项目管理

    尤威:男,研究生,研究可见光定位技术

    黄梓洋:男,研究生,研究可见光定位技术

    彭铎:男,副教授,研究无线传感器网络技术

    通讯作者:

    贾科军 kjjia@lut.edu.cn

  • 中图分类号: TN929.53

Indoor Visible Light Positioning Based on CNN–MLP Multi-Feature Fusion under Random Receiver Tilt Conditions

Funds: National Natural Science Foundation of China (62265010), Natural Science Foundation of Gansu Province (22JR5RA276, 23YFGA0062), Ph.D. Research Start-up Funding of Lanzhou University of Technology (061903)
  • 摘要: 针对室内可见光定位(VLP)系统中接收器姿态扰动会破坏接收光功率(RSS)与空间位置的对应关系,导致定位精度下降的问题,提出一种光电传感器(PD)阵列结合机器学习(ML)的特征融合定位方法。首先利用阵列中不同PD接收光功率的差异构建约束方程,采用高斯–牛顿迭代算法估计入射角余弦值。其次设计融合卷积神经网络(CNN)与多层感知机(MLP)的优化模型,实现对RSS与入射角余弦特征的联合建模,缓解了单一RSS在接收器随机扰动条件下位置映射关系不稳定的问题,增强系统对接收器姿态扰动的鲁棒性。最后引入拉丁超立方抽样(LHS)策略构建训练数据集,提升训练样本的空间代表性。仿真结果表明,在4 m×4 m×2.5 m的室内环境,平均定位误差约4.6 cm;即使接收器倾斜至55°时,平均误差仍在11.7 cm以内。与现有方法相比,定位精度提升约2.5 cm,均方根误差(RMSE)降低31.58%,实现了接收器在姿态发生扰动时的高精度室内三维定位。
  • 图  1  可见光室内定位系统模型

    图  2  局部坐标系示意图

    图  3  CNN-MLP串行融合网络

    图  4  可见光定位系统方案

    图  5  利用LHS方法进行训练数据采集示意图

    图  6  (a)不同倾角$ \alpha $下的估算误差;(b)不同倾角$ \alpha $下的有效点数

    图  7  不同PD数量的阵列的累积误差

    图  8  阵列不同倾斜姿态下的定位误差

    图  9  阵列在不同姿态下所提方法预测坐标与实际坐标对比

    图  10  阵列在不同高度平面的均方根误差

    图  11  不同定位方案性能对比

    表  1  仿真参数

    参数 参数 参数 参数 参数
    $ {P}_{\text{t},i} $/W 10 $ {\Phi }_{1/2} $/(°) 60 $ dA $/m2 0.01 B/(MHz) 10 T/(k) 290
    A/cm² 1 $ {g}_{s}({\psi }_{i,j}) $/$ {T}_{s}({\psi }_{i,j}) $ 1 r/cm 2 $ {I}_{\text{bg}} $/μA 10 $ {R}_{f} $/$ \text{k}\Omega $ 100
    $ {\psi }_{c} $ /(°) 75 $ \rho $ 0.6 k/(J/k) 1.38×10−23 $ {G}_{t} $/(A/V) 0.01 $ {g}_{m} $/(ms) 10
    下载: 导出CSV

    表  2  神经网络训练参数

    参数参数参数
    训练样本数4000×60学习率调整策略5 epoch×0.5损失函数MSE
    数据集划分70%/15%/15%优化器Adam验证频率0.2epoch
    初始学习率0.001正则化系数0.0001--
    下载: 导出CSV

    表  3  不同PD阵列设计的可见光定位性能评估

    PD阵列向量维度均方根误差/m平均误差/m轮数训练时间/min
    3240.0520.0464720:05
    4320.0470.0434519:01
    5400.0460.0414418:40
    6480.0440.0384318:12
    下载: 导出CSV
  • [1] QI Lin, LIU Yu, YU Yue, et al. Current status and future trends of meter-level indoor positioning technology: A review[J]. Remote Sensing, 2024, 16(2): 398. doi: 10.3390/rs16020398.
    [2] NGUYEN Q D M, LUKITO W D, LIU Xuemeng, et al. Deep learning-empowered RF sensing in outdoor environments: Recent advances, challenges, and future directions[J]. Electronics, 2024, 14(1): 125. doi: 10.3390/electronics14010125.
    [3] 杨瑞鑫, 张冠杰, 马帅, 等. 多LED可见光定位通信一体化稳健功率分配[J]. 电子与信息学报, 2024, 46(4): 1186–1195. doi: 10.11999/JEIT230406.

    YANG Ruixin, ZHANG Guanjie, MA Shuai, et al. Robust power allocation for multi-LED integrated visible light positioning and communication[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1186–1195. doi: 10.11999/JEIT230406.
    [4] DO T H and YOO M. An in-depth survey of visible light communication based positioning systems[J]. Sensors, 2016, 16(5): 678. doi: 10.3390/s16050678.
    [5] LEPETIT V, MORENO-NOGUER F, and FUA P. EPnP: An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155–166. doi: 10.1007/s11263-008-0152-6.
    [6] 苏辰希, 张艳语, 李盾, 等. 基于空间优化的室内可见光定位方法[J]. 光学学报, 2024, 44(13): 1306006. doi: 10.3788/AOS240587.

    SU Chenxi, ZHANG Yanyu, LI Dun, et al. Indoor visible light positioning method based on spatial optimization[J]. Acta Optica Sinica, 2024, 44(13): 1306006. doi: 10.3788/AOS240587.
    [7] BARCO ALVÁREZ J, TORRES ZAFRA J C, BETANCOURT J S, et al. Navigating in light: Precise indoor positioning using trilateration and angular diversity in a semi-spherical photodiode array with visible light communication[J]. Electronics, 2024, 13(18): 3597. doi: 10.3390/electronics13183597.
    [8] WEI Fen, WU Yi, XU Shiwu, et al. Accurate visible light positioning technique using extreme learning machine and meta-heuristic algorithm[J]. Optics Communications, 2023, 532: 129245. doi: 10.1016/j.optcom.2022.129245.
    [9] 赵黎, 韩中达, 张峰. 基于神经网络的可见光室内立体定位研究[J]. 中国激光, 2021, 48(7): 0706004. doi: 10.3788/CJL202148.0706004.

    ZHAO Li, HAN Zhongda, and ZHANG Feng. Research on stereo location in visible light room based on neural network[J]. Chinese Journal of Lasers, 2021, 48(7): 0706004. doi: 10.3788/CJL202148.0706004.
    [10] JEONG E M, YANG S H, KIM H S, et al. Tilted receiver angle error compensated indoor positioning system based on visible light communication[J]. Electronics Letters, 2013, 49(14): 890–892. doi: 10.1049/el.2013.1368.
    [11] STEENDAM H, WANG T Q, and ARMSTRONG J. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver[J]. Journal of Lightwave Technology, 2017, 35(2): 309–319. doi: 10.1109/JLT.2016.2645603.
    [12] HUA Luchi, ZHUANG Yuan, and YANG Jun. Deep learning-based fusion of visible light positioning and IMU sensors[C]. 2021 20th International Conference on Ubiquitous Computing and Communications, London, UK, 2021: 565–571. doi: 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00093.
    [13] CHEN Feng, HUANG Nuo, and GONG Chen. RSS-based visible light positioning with unknown receiver tilting angle: Robust design and experimental demonstration[J]. Optics Express, 2022, 30(22): 39775–39793. doi: 10.1364/OE.467663.
    [14] KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100–107. doi: 10.1109/TCE.2004.1277847.
    [15] WANG Jinyuan, LI Qinglin, ZHU Jianxia, et al. Impact of receiver's tilted angle on channel capacity in VLCs[J]. Electronics Letters, 2017, 53(6): 421–423. doi: 10.1049/el.2016.4657.
    [16] WANG Lixuan and GUO Caili. Indoor visible light localization algorithm with multi-directional PD array[C]. 2017 IEEE Globecom Workshops, Singapore, Singapore, 2017: 1–6. doi: 10.1109/glocomw.2017.8269149.
    [17] 魏政帅, 薛琦, 孙晓红, 等. 基于自适应滤波器的高精度可见光定位方法[J]. 光通信技术, 2021, 45(9): 5–10. doi: 10.13921/j.cnki.issn1002-5561.2021.09.002.

    WEI Zhengshuai, XUE Qi, SUN Xiaohong, et al. High precision visible light positioning method based on adaptive filter[J]. Optical Communication Technology, 2021, 45(9): 5–10. doi: 10.13921/j.cnki.issn1002-5561.2021.09.002.
    [18] WANG Zhenyu, LIANG Zhonghua, LIU Ren, et al. Design and performance analysis for indoor visible light positioning with single LED and single-tilted-rotatable PD[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5502414. doi: 10.1109/TIM.2024.3383461.
    [19] STEENDAM H. A 3-D positioning algorithm for AOA-based VLP With an aperture-based receiver[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 23–33. doi: 10.1109/JSAC.2017.2774478.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-22
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-11

目录

    /

    返回文章
    返回