高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向卫星任务规划的专家链构建与优化方法

夏维 魏宏图 程颖 汪君婷 胡笑旋

夏维, 魏宏图, 程颖, 汪君婷, 胡笑旋. 面向卫星任务规划的专家链构建与优化方法[J]. 电子与信息学报. doi: 10.11999/JEIT251018
引用本文: 夏维, 魏宏图, 程颖, 汪君婷, 胡笑旋. 面向卫星任务规划的专家链构建与优化方法[J]. 电子与信息学报. doi: 10.11999/JEIT251018
XIA Wei, WEI Hongtu, CHENG Ying, WANG Junting, HU Xiaoxuan. An Expert of Chain Construction and Optimization Method for Satellite Mission Planning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251018
Citation: XIA Wei, WEI Hongtu, CHENG Ying, WANG Junting, HU Xiaoxuan. An Expert of Chain Construction and Optimization Method for Satellite Mission Planning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251018

面向卫星任务规划的专家链构建与优化方法

doi: 10.11999/JEIT251018 cstr: 32379.14.JEIT251018
基金项目: 国家自然科学基金面上项目(72271074)
详细信息
    作者简介:

    夏维:男,副教授,研究方向为计算机科学与技术

    魏宏图:女,硕士生,研究方向为低资源场景下的大语言模型应用

    程颖:女,硕士生,研究方向为大语言模型在卫星任务规划领域的应用

    汪君婷:女,博士生,研究方向为大语言模型在时序预测方面的应用

    胡笑旋:男,教授,研究方向为空间信息网络任务规划与资源调度

    通讯作者:

    夏维 xiawei@hfut.edu.cn

  • 中图分类号: TP18; TP391.1; V19

An Expert of Chain Construction and Optimization Method for Satellite Mission Planning

Funds: The National Natural Science Foundation of China General Program (72271074)
  • 摘要: 卫星任务规划是航天资源调度领域的关键优化问题,在面对动态需求时,传统方法因其复杂的建模流程,常面临响应滞后、灵活性不足等挑战,且业务语言与数学模型间存在语义断层。为此,该文提出一种基于专家链(CoE)与动态知识增强机制(DKE)的大语言模型(LLM)推理框架。该框架聚焦于模型动态修改,通过设计一个需求解析、指令路由、代码生成的专家协同工作流,实现从自然语言指令到数学模型的精确映射。此外,该框架借助动态知识库与Few-Shot学习策略,使系统在不依赖梯度更新情况下具备持续优化能力。实验结果表明,相较于标准提示词方法(SP)、思维链技术(CoT)以及基于GPT4-o的标准提示词方法,准确率达到82%,平均响应时间81.28 s,显著优于所有对比基线,实验结果验证了该方法能够有效提升LLM在卫星任务规划模型动态修改任务中的处理能力。
  • 图  1  推理框架架构图

    图  2  专家链工作流流程图

    1  基于大语言模型的卫星任务规划模型动态修改算法

     输入 修改请求q,卫星任务规划模型建模$ \mathrm{V}{\mathrm{M}}_{\mathrm{user}} $,动态知识库K
     输出 符合用户需求进行修改并且成功验证的卫星任务规划模型
     $ \mathrm{V}{\mathrm{M}}_{\mathrm{target}} $
     (1) initialize parameters //参数初始化
     (2) $ \boldsymbol{v}=\sigma (q) $ //用户修改需求文本向量化
     (3) $ {\boldsymbol{N}}_{\mathrm{k}}(\boldsymbol{v})=\mathrm{argmaxcos}(\boldsymbol{v},{\boldsymbol{v}}_{{i}})_{{\boldsymbol{v}}_{{i}}\in \boldsymbol{V}}^{\mathrm{k}} $ //检索相似向量
     (4) $ \{{E}_{i}\}_{i=1}^{\mathrm{k}}=\{\varphi_{i=1}^{\mathrm{k}} ({\boldsymbol{v}}_{{i}})|{\boldsymbol{v}}_{{i}}\in {\boldsymbol{N}}_{\mathrm{k}}(\boldsymbol{v})\} $ //根据向量检索经验3
       元组
     (5) $ P=\mathrm{Template}_{i=1}^{\mathrm{k}}({E}_{i})\oplus q $ //在上下文中嵌入经验3元组
     (6) IF $ \varPhi ({M}_{1}(q))==0 $ THEN
     (7)  RETURN
     (8) ELSE THEN
     (9)  activate$ {M}_{2}(q) $ //激活高阶模型专家链
     (10)   RETURN $ \mathrm{V}{\mathrm{M}}_{\mathrm{target}} $
    下载: 导出CSV

    表  1  难度等级

    难度等级说明
    简单无大规模批量操作,且修改点数量少(<8个)。
    中等满足以下条件之一:①修改点数量较多(≥8个);
    ②包含大规模批量操作
    困难修改点数量较多(≥8个)且包含大规模批量操作
    下载: 导出CSV

    表  2  COE with DKE 与其他实验方法的Accuracy与ART对比

    方法模型Accuracy(%)ART(s)
    Standard PromptDeepSeek R135307.23
    COTDeepSeek R142350.19
    Standard PromptGPT-4o47173.99
    COE with DKE-8281.28
    下载: 导出CSV

    表  3  CoE with DKE与其他实验方法在不同实例规模下平均响应时间对比

    方法模型n=0~100n=101~500n=501~1000
    ART(s)ART(s)ART(s)
    Standard PromptDeepSeek R183.72254.53458.21
    CoTDeepSeek R192.36301.37450.52
    Standard PromptGPT-4o37.82168.91331.26
    CoE with DKE-69.7282.4886.58
    下载: 导出CSV

    表  4  COE with DKE与其他实验方法在不同难度等级需求下的结果对比

    方法模型简单中等困难
    Accuracy (%)ART(s)Accuracy (%)ART(s)Accuracy(%)ART(s)
    Standard PromptDeepSeek R147.91265.4126.83326.2518.18213.83
    CoTDeepSeek R154.17275.4731.71361.7827.30275.47
    Standard PromptGPT-4o62.5074.0539.02100.8418.1887.42
    COE with DKE-93.7540.4382.9286.0354.54116.13
    下载: 导出CSV

    表  5  消融实验结果对比

    方法模型Accuracy(%)ART(s)
    首选模型高阶模型
    CoEDeepSeek R1-74123.49
    CoE with DKEDeepSeek R1DeepSeek R183126.78
    CoEDeepSeek V3-5978.32
    CoE with DKEDeepSeek V3DeepSeek V37080.43
    CoEDeepSeek V3DeepSeek R173134.74
    CoE with DKEDeepSeek V3DeepSeek R18281.28
    下载: 导出CSV

    表  6  不同配置下高阶模型调用次数对比

    方法模型高阶模型调用次数
    首选模型高阶模型
    CoEDeepSeek V3DeepSeek R158
    CoE with DKEDeepSeek R1DeepSeek R133
    CoE with DKEDeepSeek V3DeepSeek V342
    CoE with DKEDeepSeek V3DeepSeek R136
    下载: 导出CSV
  • [1] LI Peiyan, CUI Peixing, and WANG Huiquan. Mission sequence model and deep reinforcement learning-based replanning method for multi-satellite observation[J]. Sensors, 2025, 25(6): 1707. doi: 10.3390/s25061707.
    [2] ZHENG Qingbiao, CAI Yuanwen, and WANG Peng. A modified genetic algorithm for large-scale and joint satellite mission planning[J]. Egyptian Informatics Journal, 2025, 31: 100713. doi: 10.1016/j.eij.2025.100713.
    [3] YAO Wei, SHEN Xin, ZHANG Guo, et al. A spiking neural network based proximal policy optimization method for multi-point imaging mission scheduling of earth observation satellite[J]. Swarm and Evolutionary Computation, 2025, 94: 101867. doi: 10.1016/j.swevo.2025.101867.
    [4] LI Shuo, WANG Gang, and CHEN Jinyong. AEM-D3QN: A graph-based deep reinforcement learning framework for dynamic earth observation satellite mission planning[J]. Aerospace, 2025, 12(5): 420. doi: 10.3390/aerospace12050420.
    [5] LI Xinyi, WANG Sai, ZENG Siqi, et al. A survey on LLM-based multi-agent systems: Workflow, infrastructure, and challenges[J]. Vicinagearth, 2024, 1(1): 9. doi: 10.1007/s44336-024-00009-2.
    [6] FOURATI F and ALOUINI M S. Artificial intelligence for satellite communication: A review[J]. Intelligent and Converged Networks, 2021, 2(3): 213–243. doi: 10.23919/ICN.2021.0015.
    [7] SUN Chuanneng, HUANG Songjun, and POMPILI D. LLM-based multi-agent decision-making: Challenges and future directions[J]. IEEE Robotics and Automation Letters, 2025, 10(6): 5681–5688. doi: 10.1109/lra.2025.3562371.
    [8] SHI Qian, HE Da, LIU Zhengyu, et al. Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping[J]. Journal of Remote Sensing, 2023, 3: 0078. doi: 10.34133/remotesensing.0078.
    [9] HU Fengming, XU Feng, WANG R, et al. Conceptual study and performance analysis of tandem multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
    [10] JIANG Liguang, NIELSEN K, and ANDERSEN O B. Beyond exact repeat missions: Embracing geodetic altimetry for inland water monitoring and modeling[J]. Journal of Remote Sensing, 2024, 4: 0269. doi: 10.34133/remotesensing.0269.
    [11] JI H R and HUANG Dianyuan. A mission planning method for multi-satellite wide area observation[J]. International Journal of Advanced Robotic Systems, 2019, 16(6): 1729881419890715. doi: 10.1177/1729881419890715.
    [12] SONG Yanjie, ZHOU Ziyu, ZHANG Zhongshan, et al. A framework involving MEC: Imaging satellites mission planning[J]. Neural Computing and Applications, 2020, 32(19): 15329–15340. doi: 10.1007/s00521-019-04047-6.
    [13] ZHANG Guohui, LI Xinhong, WANG Xun, et al. Research on the prediction problem of satellite mission schedulability based on Bi-LSTM model[J]. Aerospace, 2022, 9(11): 676. doi: 10.3390/aerospace9110676.
    [14] LI Zhouxiao and LIU Yuan. Onboard autonomous mission generation method based on user preference[J]. Advances in Space Research, 2024, 74(1): 437–453. doi: 10.1016/j.asr.2024.03.055.
    [15] CARRASCO A, RODRIGUEZ-FERNANDEZ V, and LINARES R. Large language models as autonomous spacecraft operators in Kerbal Space Program[J]. Advances in Space Research, 2025, 76(6): 3480–3497. doi: 10.1016/j.asr.2025.06.034.
    [16] WU Di, ZHANG R, ZUCCHELLI E M, et al. APBench and benchmarking large language model performance in fundamental astrodynamics problems for space engineering[J]. Scientific Reports, 2025, 15(1): 7944. doi: 10.1038/s41598-025-91150-5.
    [17] RAMAMONJISON R, YU T T L, LI R, et al. NL4Opt competition: Formulating optimization problems based on their natural language descriptions[C]. The NeurIPS 2022 Competitions Track, New Orleans, USA, 2022: 189–203.
    [18] XIAO Ziyang, ZHANG Dongxiang, WU Yangjun, et al. Chain-of-experts: When LLMs meet complex operations research problems[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
    [19] ASTORGA N, LIU T, XIAO Yuanzhang, et al. Autoformulation of mathematical optimization models using LLMs[C]. The 42nd International Conference on Machine Learning, Vancouver, Canada, 2025.
    [20] JIANG Caigao, SHU Xiang, QIAN Hong, et al. LLMOPT: Learning to define and solve general optimization problems from scratch[C]. The 13th International Conference on Learning Representations, Singapore, Singapore, 2025.
    [21] HUANG Chenyu, TANG Zhengyang, HU Shixi, et al. ORLM: A customizable framework in training large models for automated optimization modeling[J]. Operations Research, 2025, 73(6): 2986–3009. doi: 10.1287/opre.2024.1233.
    [22] AHMADITESHNIZI A, GAO Wenzhi, and UDELL M. OptiMUS: Optimization modeling using MIP solvers and large language models[EB/OL]. https://doi.org/10.48550/arXiv.2310.06116, 2023.
    [23] YE Haoran, WANG Jiarui, CAO Zhiguang, et al. ReEvo: Large language models as hyper-heuristics with reflective evolution[C]. The 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024.
    [24] YAO Shunyu, LIU Fei, LIN Xi, et al. Multi-objective evolution of heuristic using large language model[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 27144–27152. doi: 10.1609/aaai.v39i25.34922.
    [25] DAT P V T, DOAN L, and BINH H T T. HSEvo: Elevating automatic heuristic design with diversity-driven harmony search and genetic algorithm using LLMs[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 26931–26938. doi: 10.1609/aaai.v39i25.34898.
    [26] SURINA A, MANSOURI A, QUAEDVLIEG L, et al. Algorithm discovery with LLMs: Evolutionary search meets reinforcement learning[EB/OL]. https://doi.org/10.48550/arXiv.2504.05108, 2025.
    [27] LI Zhanxian, YE Nan, and HE Yifeng. Meteorological data transmission management system based on multi-source satellite data[C]. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms, Changchun, China, 2023: 1343–1346. doi: 10.1109/EEBDA56825.2023.10090642.
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  29
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-28
  • 修回日期:  2026-01-05
  • 录用日期:  2026-01-05
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回