高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的全轮HALFLOOP-48相关调柄攻击

孙晓萌 张文英 苑兆忠

孙晓萌, 张文英, 苑兆忠. 改进的全轮HALFLOOP-48相关调柄攻击[J]. 电子与信息学报. doi: 10.11999/JEIT251014
引用本文: 孙晓萌, 张文英, 苑兆忠. 改进的全轮HALFLOOP-48相关调柄攻击[J]. 电子与信息学报. doi: 10.11999/JEIT251014
SUN Xiaomeng, ZHANG Wenying, YUAN Zhaozhong. Improved Related-Tweak Attack on Full-Round HALFLOOP-48[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251014
Citation: SUN Xiaomeng, ZHANG Wenying, YUAN Zhaozhong. Improved Related-Tweak Attack on Full-Round HALFLOOP-48[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251014

改进的全轮HALFLOOP-48相关调柄攻击

doi: 10.11999/JEIT251014 cstr: 32379.14.JEIT251014
基金项目: 国家自然科学基金(62272282)
详细信息
    作者简介:

    孙晓萌:女,博士生,研究方向为分组密码算法的安全性分析

    张文英:女,教授,博士生导师,研究方向为哈希函数,分组密码算法设计与分析,口令安全

    苑兆忠:男,副教授,研究方向为信息安全

    通讯作者:

    张文英 zhangwenying@sdnu.edu.cn

  • 中图分类号: TN918; TP309

Improved Related-Tweak Attack on Full-Round HALFLOOP-48

Funds: The National Natural Science Foundation of China (62272282)
  • 摘要: HALFLOOP是一类基于调柄机制、结构类似AES的轻量级分组密码,用于保护第四代高频无线电系统中的自动链路消息。由于其行移位与列混合操作具有使差分快速扩散的特点,寻找具有实际可行性的长轮数、高概率的差分区分器,并实现对完整轮HALFLOOP-48的有效攻击仍是亟待解决的关键问题。为此,该文提出了一个新的截断差分三明治区分器框架,并基于布尔可满足性(Boolean Satisfiability Problem,SAT)方法实现自动化搜索最优差分区分器。该框架将密码分为三个子密码层, $ {\mathrm{E}}_{0} $和$ {\mathrm{E}}_{1} $使用字节级模型,$ {\mathrm{E}}_{\mathrm{m}} $使用比特级模型。为突破大型S盒差分特征建模的瓶颈,该文提出了基于仿射子空间的降维方法,将高维向量的差分特征分解为两个低维子向量,显著降低了SAT的约束规模。其次,为提高区分器概率,该文将$ {\mathrm{E}}_{0} $与$ {\mathrm{E}}_{1} $的依赖关系系统地分为三层,逐一计算每层概率并相乘,得到了概率高达$ {2}^{-43.2} $的8轮HALFLOOP-48截断差分三明治区分器,且给出了满足该差分路径的明文对实例。最终,利用该实际差分路径,对完整轮数的HALFLOOP-48算法发起密钥恢复攻击。与已有结果相比,该文结果在时间复杂度上减少了$ {2}^{25.4} $,在内存复杂度上减少了$ {2}^{10} $。结果说明HALFLOOP算法无法抵抗相关调柄下的三明治攻击。
  • 图  1  HALFLOOP-48的轮函数

    图  2  截断三明治区分器

    图  3  活跃字节$ {S}_{2,2} $在RR下产生的两条差分特征

    图  4  $ {\mathrm{E}}_{\mathrm{m}} $的3轮最优截断差分

    图  5  对完整轮数HALFLOOP-48算法的密钥恢复攻击

    表  1  HALFLOOP-48算法分析结果

    攻击场景攻击
    轮数
    时间
    复杂度
    数据
    复杂度
    存储
    复杂度
    文献
    DS中间相遇攻击$ 10 $$ {2}^{122} $$ 13 $$ {2}^{57} $B[3]
    相关调柄攻击$ 8 $$ {2}^{92.71} $$ {2}^{33.27} $$ {2}^{36.385} $B[4]
    相关调柄三明治攻击$ 10 $$ {2}^{96.2} $$ {2}^{32.8} $$ {2}^{42.8} $B第5节
    相关调柄矩形攻击$ 10 $$ {2}^{99.2} $$ {2}^{16.2} $$ {2}^{26.2} $B第5节
    下载: 导出CSV

    表  2  轮密钥差分特征

    轮密钥差分特征
    $ \Delta {\text{rk}}_{1} $$ {0}^{16}\parallel \delta \parallel {0}^{24} $
    $ \Delta {\text{rk}}_{2} $0
    $ \Delta {\text{rk}}_{3} $0
    $ \Delta {\text{rk}}_{4} $$ \delta \parallel {0}^{24}\parallel \delta \parallel {0}^{8} $
    $ \Delta {\text{rk}}_{5} $$ {0}^{16}\parallel \delta \parallel {0}^{24} $
    $ \Delta {\text{rk}}_{6} $$ \delta \parallel {0}^{16}\parallel S\left(\delta \right)\parallel \delta \parallel {0}^{8} $
    $ \Delta {\text{rk}}_{7} $$ {0}^{8}\parallel S\left(\delta \right){\parallel 0}^{24}\parallel S\left(\delta \right) $
    $ \Delta {\text{rk}}_{8} $$ \delta \parallel {0}^{16}\parallel S\left(\delta \right)\parallel {0}^{16} $
    $ \Delta {\text{rk}}_{9} $$ S\left(S\left(\delta \right)\right)\parallel S\left(\delta \right)\parallel \delta \parallel {0}^{8}\parallel \delta \parallel {0}^{8} $
    $ \Delta {\text{rk}}_{10} $$ \delta \parallel {0}^{8}\parallel S\left(\delta \right)\parallel S\left(\delta \right){\parallel 0}^{16} $
    $ \Delta {\text{rk}}_{11} $$ S(\delta )\parallel {0}^{24}\parallel S\left(\left(\delta \right)\right)\parallel S\left(\delta \right) $
    下载: 导出CSV

    表  3  HALFLOOP的8轮区分器

    轮数 $ \Delta \text{rk} $ $ \Delta x $ $ \Delta y $ $ \Delta w $ $ r $ 轮数 $ \nabla \text{rk} $ $ \nabla x $ $ \nabla y $ $ \nabla w $ r
    上差分特征 下差分特征
    $ {R}_{1} $ 00 00
    00 00
    b0 00
    00 00
    00 00
    b0 00
    00 00
    00 00
    00 00
    00 00
    00 00
    b0 00
    $ 1 $ $ {R}_{5} $ 00 00
    00 00
    b0 00
    98 91
    00 ca
    6c 60
    25 5b
    00 17
    33 ab
    fc ee
    00 3d
    00 00
    $ {2}^{-11.415}\dagger $
    $ {R}_{2} $ 00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    $ 1 $ $ {R}_{6} $ b0 01
    00 b0
    00 00
    4c 76
    00 8d
    00 00
    4a 5b
    00 3e
    00 00
    d9 57
    db 27
    00 00
    $ {2}^{-18}\dagger $
    $ {R}_{3} $ 00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    $ 1 $ $ {R}_{7} $ 00 00
    db 00
    00 db
    d9 57
    00 27
    00 db
    56 38
    00 af
    00 da
    b0 a0
    00 00
    00 00
    $ {2}^{-5.415}\dagger $
    $ {R}_{4} $ b0 00
    00 b0
    00 00
    b0 00
    00 b0
    00 00
    84 00
    00 84
    00 00
    89 00
    6c 00
    b0 00
    $ {\left({2}^{-2}\right)}^{2} $ $ {R}_{8} $ b0 a0
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    00 00
    $ 1 $
    $ {R}_{5} $ 00 00
    00 00
    b0 00
    89 00
    6c 00
    00 00
    c4 00
    33 00
    00 00
    b0 01
    38 b0
    a4 06
    $ {2}^{-11.415}\dagger $ $ {R}_{9} $ c9 00
    a0 b0
    b0 00
    c9 00
    a0 b0
    b0 00
    $ {R}_{6} $ b0 01
    00 b0
    00 00
    00 00
    38 00
    a4 06
    00 00
    64 00
    2a 0c
    a0 00
    aa 00
    30 00
    $ {2}^{-18}\dagger $
    $ {R}_{7} $ 00 00
    31 00
    00 31
    a0 00
    9b 00
    30 31
    83 00
    77 00
    67 a4
    4e 53
    98 a4
    1f f3
    $ {2}^{-5.415}\dagger $
    下载: 导出CSV
  • [1] Department of Defense. MILSTD-188-141D Interoperability and performance standardsfor medium and high frequencyradio systems[S]. Washington: Department of Defense, 2017. (查阅网上资料, 未找到本条文献出版地, 请确认).
    [2] DANSARIE M, DERBEZ P, LEANDER G, et al. Breaking HALFLOOP-24[J]. IACR Transactions on Symmetric Cryptology, 2022, 2022(3): 217–238. doi: 10.46586/tosc.v2022.I3.217-238.
    [3] LEANDER G, RASOOLZADEH S, and STENNES L. Cryptanalysis of HALFLOOP block ciphers: Destroying HALFLOOP-24[J]. IACR Transactions on Symmetric Cryptology, 2023, 2023(4): 58–82. doi: 10.46586/tosc.v2023.I4.58-82.
    [4] LIN Yunxue and SUN Ling. Related-tweak and related-key differential attacks on HALFLOOP-48[C]. Proceedings of the 22nd International Conference on Applied Cryptography and Network Security, Abu Dhabi, United Arab Emirates, 2024: 355–377. doi: 10.1007/978-3-031-54776-8_14.
    [5] WAGNER D A. The boomerang attack[C]. Proceedings of the 6th International Workshop on Fast Software Encryption, Rome, Italy, 1999: 156–170. doi: 10.1007/3-540-48519-8_12.
    [6] MURPHY S. The return of the cryptographic boomerang[J]. IEEE Transactions on Information Theory, 2011, 57(4): 2517–2521. doi: 10.1109/TIT.2011.2111091.
    [7] DUNKELMAN O, KELLER N, and SHAMIR A. A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony[C]. Proceedings of the 30th Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2010: 393–410. doi: 10.1007/978-3-642-14623-7_21.
    [8] BIRYUKOV A and KHOVRATOVICH D. Related-key cryptanalysis of the full AES-192 and AES-256[C]. Proceedings of the 15th International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, 2009: 1–18. doi: 10.1007/978-3-642-10366-7_1.
    [9] 谭林, 曾新皓, 刘加美. AES-192的相关密钥飞去来器攻击和矩形攻击[J]. 密码学报(中英文), 2024, 11(5): 1018–1028. doi: 10.13868/j.cnki.jcr.000723.

    TAN Lin, ZENG Xinhao, and LIU Jiamei. Related-key boomerang and rectangle attacks on AES-192[J]. Journal of Cryptologic Research, 2024, 11(5): 1018–1028. doi: 10.13868/j.cnki.jcr.000723.
    [10] BOURA C and COGGIA D. Efficient MILP modelings for Sboxes and linear layers of SPN ciphers[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(3): 327–361. doi: 10.13154/tosc.v2020.i3.327-361.
    [11] ANKELE R and KÖLBL S. Mind the gap - a closer look at the security of block ciphers against differential cryptanalysis[C]. Proceedings of the 25th International Conference on Selected Areas in Cryptography, Calgary, Canada, 2018: 163–190. doi: 10.1007/978-3-030-10970-7_8.
    [12] MA Sudong, JIN Chenhui, SHI Zhen, et al. Correlation attacks on snow-v-like stream ciphers based on a heuristic MILP model[J]. IEEE Transactions on Information Theory, 2024, 70(6): 4478–4491. doi: 10.1109/TIT.2023.3326348.
    [13] DAEMEN J and RIJMEN V. The Design of Rijndael: AES - The Advanced Encryption Standard[M]. Berlin, Heidelberg: Springer, 2002. doi: 10.1007/978-3-662-04722-4. .
    [14] CID C, HUANG T, PEYRIN T, et al. Boomerang connectivity table: A new cryptanalysis tool[C]. Proceedings of the 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 2018: 683–714. doi: 10.1007/978-3-319-78375-8_22.
    [15] 蒋梓龙, 金晨辉. 对TweAES的相关调柄多重不可能差分攻击[J]. 电子与信息学报, 2023, 45(1): 344–352. doi: 10.11999/JEIT211147.

    JIANG Zilong and JIN Chenhui. Related-tweak multiple impossible differential attack for TweAES[J]. Journal of Electronics & Information Technology, 2023, 45(1): 344–352. doi: 10.11999/JEIT211147.
    [16] 张丽, 吴文玲, 张蕾, 等. 基于交换等价的缩减轮AES-128的密钥恢复攻击[J]. 计算机研究与发展, 2021, 58(10): 2213–2221. doi: 10.7544/issn1000-1239.2021.20210549.

    ZHANG Li, WU Wenling, ZHANG Lei, et al. Key-recovery attack on reduced-round AES-128 using the exchange-equivalence[J]. Journal of Computer Research and Development, 2021, 58(10): 2213–2221. doi: 10.7544/issn1000-1239.2021.20210549.
    [17] SONG Ling, ZHANG Nana, YANG Qianqian, et al. Optimizing rectangle attacks: A unified and generic framework for key recovery[C]. Proceedings of the 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2022: 410–440. doi: 10.1007/978-3-031-22963-3_14.
    [18] BLONDEAU C, GÉRARD B, and TILLICH J P. Accurate estimates of the data complexity and success probability for various cryptanalyses[J]. Design Codes Cryptography, 2011, 59(1/3): 3–34. doi: 10.1007/S10623-010-9452-2.
    [19] 严智广, 韦永壮, 叶涛. 全轮超轻量级分组密码PFP的相关密钥差分分析[J]. 电子与信息学报, 2025, 47(3): 729–738. doi: 10.11999/JEIT240782.

    YAN Zhiguang, WEI Yongzhuang, and YE Tao. Related-key differential cryptanalysis of full-round PFP ultra-lightweight block cipher[J]. Journal of Electronics & Information Technology, 2025, 47(3): 729–738. doi: 10.11999/JEIT240782.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回