高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

知识引导的小样本地表异常检测

冀虹 高智 陈泊安 敖伟 曹民 王桥

冀虹, 高智, 陈泊安, 敖伟, 曹民, 王桥. 知识引导的小样本地表异常检测[J]. 电子与信息学报. doi: 10.11999/JEIT251000
引用本文: 冀虹, 高智, 陈泊安, 敖伟, 曹民, 王桥. 知识引导的小样本地表异常检测[J]. 电子与信息学报. doi: 10.11999/JEIT251000
JI Hong, GAO Zhi, CHEN Boan, AO Wei, CAO Min, WANG Qiao. Knowledge-Guided Few-Shot Earth Surface Anomalies Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251000
Citation: JI Hong, GAO Zhi, CHEN Boan, AO Wei, CAO Min, WANG Qiao. Knowledge-Guided Few-Shot Earth Surface Anomalies Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251000

知识引导的小样本地表异常检测

doi: 10.11999/JEIT251000 cstr: 32379.14.JEIT251000
基金项目: 国家自然科学基金重大项目 (42192580, 42192583),国家自然科学基金 (42501503)
详细信息
    作者简介:

    冀虹:女,讲师,研究方向为遥感影像解译、计算机视觉

    高智:男,教授,研究方向为计算机视觉、机器学习、遥感

    陈泊安:男,博士生,研究方向为遥感图像理解、图神经网络

    敖伟:男,博士后,研究方向为计算机视觉、遥感影像解译

    曹民:男,高级工程师,研究方向为精密工程测量、智能交通系统

    王桥:男,教授,中国工程院院士,研究方向为环境遥感与地理信息系统

    通讯作者:

    高智 gaozhinus@gmail.com

  • 中图分类号: TN911.73; TP751

Knowledge-Guided Few-Shot Earth Surface Anomalies Detection

Funds: The National Natural Science Foundation of China Major Program (42192580, 42192583), The National Natural Science Foundation of China (42501503)
  • 摘要: 地表异常(ESA)是指地球表面因自然或人为因素引发的突发性灾害事件,具有强破坏性和广泛影响,及时准确地发现各类地表异常事件对社会安全与可持续发展具有重要意义。遥感技术是地表异常检测的重要手段,但受限于标注数据匮乏、地表异常遥感影像背景复杂,以及多源遥感影像分布差异等因素,基于深度学习的异常检测模型性能有限。因此,该文提出一种知识引导的小样本学习方法,在异常遥感影像样本稀缺时引入语言知识提升分类性能。该方法利用大语言模型为不同遥感影像类别生成抽象化的文本描述,从语言模态角度刻画常规地物与异常地物的特征及其空间语义关系。然后通过文本编码器将文本描述映射到语言特征空间,并设计跨模态语义知识生成模块,自动学习并融合语言与视觉模态的语义表征。同时建立自注意力机制建模上下文关系,将提取的语义上下文信息与视觉原型特征融合,形成跨模态联合表征。该方法有效增强了小样本任务中原型特征的判别性,提高了目标域异常样本与多模态原型特征的匹配准确度。实验表明,该方法能够充分利用语言知识,弥补视觉信息的不足,提升小样本学习模型对地表异常遥感影像的表征能力,在跨域和域内小样本分类任务上均表现出一定优势。
  • 图  1  知识引导的小样本学习方法示意图

    图  2  现有图像-文本数据对和本文通过语言模型获取的类别描述对比

    图  3  语言模型输出的地表异常遥感影像类别语言描述

    图  4  顾及动态场景信息的自适应语言表征学习示意图

    图  5  不同参数值对小样本分类性能的影响

    1  知识引导的小样本学习方法网络训练流程

     1:输入:训练图像数据集$ {\mathcal{D}_{\rm{base}}} $,文本描述$ {\boldsymbol{t}} $,文本编码器
     $ g( \cdot ) $,软提示生成器$ s( \cdot ) $
     2:输出:特征提取网络$ f({\text{ }} \cdot {\text{ }};\mathcal{F}) $,软提示生成器$ s( \cdot ) $
     3:repeat
     4: 采样小样本任务$ \{ \mathcal{S},\mathcal{Q}\} $;
     5: 计算支持样本的视觉特征:$ {\boldsymbol{z}}_k^v = f({{\boldsymbol{x}}_k};\mathcal{F}) $,
     $ k \in \{ 1,2,\cdots,K\} $;
     6: 计算基于视觉特征的软提示$ {{\boldsymbol{P}}^k} = s({\boldsymbol{z}}_k^v) \in {\mathbb{R}^{L \times T \times 512}} $;
     7: 创建第$ k $类的语言词嵌入向量
     $ {{\hat {\boldsymbol t}}} = {\text{CAT}}({{\boldsymbol{P}}^k},{\boldsymbol{t}}) = {[{\boldsymbol{p}}]_1}{[{\boldsymbol{p}}]_2}\cdots{[{\boldsymbol{p}}]_T}[{\boldsymbol{t}}] $;
     8: 计算第$ k $类别的跨模态语义嵌入特征
     $ {\boldsymbol{a}} = \{ {{\boldsymbol{a}}_l}\} _{l = 1}^L = \{ g({{{\hat {\boldsymbol t}}}_l})\} _{l = 1}^L $;
     9: 利用式(10)和式(11)计算自注意重构语言特征向量$ {{\hat {\boldsymbol{a}}}} $;
     10: 通计算跨模态原型特征$ {{\boldsymbol{z}}_k} = {\boldsymbol{z}}_k^v + \alpha {{\hat {\boldsymbol{a}}}} $;
     11: 计算查询样本特征$ {{\boldsymbol{z}}_q} = f({{\boldsymbol{x}}_q};\mathcal{F}) $;
     12: $ {{\boldsymbol{z}}_k} $和$ {{\boldsymbol{z}}_q} $进行匹配,计算交叉熵损失,回传梯度,更新网络。
     13:until 网络收敛
     14:返回 $ f({\text{ }} \cdot {\text{ }};\mathcal{F}) $,$ s( \cdot ) $
    下载: 导出CSV

    表  1  ESAD数据集统计数据

    类别洪水滑坡泥石流飓风野火地震火山喷发龙卷风海啸火灾森林大火
    数量647594812961201142172541071548996
    下载: 导出CSV

    表  2  本文和其他方法在ESAD数据集上的跨域小样本分类性能(%)

    方法 特征提取网络 NWPU45→ESAD AID→ESAD
    transfer learning[15] ResNet-12 58.94±0.65 56.12±0.27
    S2M2 [31] ResNet-12 56.24±0.38 51.37±0.53
    MAML[17] Conv-4-64 46.34±0.42 43.28±0.45
    Meta-SGD[32] ResNet-12 49.85±0.77 48.66±2.21
    MatchingNet[33] ResNet-12 51.36±0.52 51.77±0.56
    ProtoNet[16] ResNet-12 57.27±0.67 57.12±0.66
    RelationNet[34] ResNet-12 56.26±0.43 54.84±0.66
    本文方法 ResNet-12 61.99±0.22 59.79±0.42
    下载: 导出CSV

    表  3  本文和其他方法在NWPU45和AID数据集上的域内小样本分类性能(%)

    方法 特征提取网络 NWPU45 AID
    transfer baseline[17] ResNet-12 69.02±0.46 67.12±0.47
    S2M2 [31] ResNet-12 63.24±0.47 66.22±0.45
    MAML[17] Conv-4-64 58.99±0.45 60.11±0.50
    Meta-SGD[32] ResNet-12 60.63±0.90 53.14±1.46
    MatchingNet[33] ResNet-12 61.57±0.49 64.30±0.46
    ProtoNet[16] ResNet-12 64.52±0.48 67.08±0.47
    RelationNet[34] ResNet-12 65.52±0.85 68.56±0.49
    RS-MetaNet[28] ResNet-50 52.78±0.09 53.37±0.56
    SCL-MLNet[35] Conv-256 62.21±1.12 59.49±0.96
    DLA-MatchNet[29] ResNet-12 68.80±0.70 57.21±0.82
    SPNet[36] ResNet-12 67.84±0.87 -
    IDLN[37] ResNet-12 75.25±0.75 -
    本文方法 ResNet-12 76.94±0.54 72.98±0.51
    下载: 导出CSV

    表  4  不同文本描述形式和信息融合方式对小样本分类性能的影响(%)

    设置文本描述多模态信息融合方法ESADNWPU45
    (a)--57.74±0.7772.16±0.53
    (b)[Class_name]-58.01±0.6572.75±0.46
    (c)“This is a photo of [Class_name]”-58.89±0.4373.21±0.53
    (d)ChatGPTAddition58.64±0.6373.04±0.48
    (e)ChatGPT本章基于注意力的方法59.75±0.6473.45±0.51
    (f)ChatGPT+自动词向量学习Addition60.95±0.7774.08±0.56
    (g)ChatGPT+自动词向量学习本章基于注意力的方法61.99±0.2276.94±0.41
    下载: 导出CSV
  • [1] 王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.

    WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
    [2] WEI Haishuo, JIA Kun, WANG Qiao, et al. Real-time remote sensing detection framework of the earth's surface anomalies based on a priori knowledge base[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103429. doi: 10.1016/j.jag.2023.103429.
    [3] 高智, 胡傲涵, 陈泊安, 等. 多层级几何—语义融合的图神经网络地表异常检测框架[J]. 遥感学报, 2024, 28(7): 1760–1770. doi: 10.11834/jrs.20243301.

    GAO Zhi, HU Aohan, CHEN Boan, et al. A hierarchical geometry-to-semantic fusion GNN framework for earth surface anomalies detection[J]. National Remote Sensing Bulletin, 2024, 28(7): 1760–1770. doi: 10.11834/jrs.20243301.
    [4] 刘思琪, 高智, 陈泊安, 等. 基于图网络的遥感地物关系表达与推理的地表异常检测[J]. 电子与信息学报, 2025, 47(6): 1690–1703. doi: 10.11999/JEIT240883.

    LIU Siqi, GAO Zhi, CHEN Boan, et al. Earth surface anomaly detection using graph neural network-based representation and reasoning of remote sensing geographic object relationships[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1690–1703. doi: 10.11999/JEIT240883.
    [5] ZHAO Chuanwu, PAN Yaozhong, WU Hanyi, et al. A novel spectral index for vegetation destruction event detection based on multispectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11290–11309. doi: 10.1109/JSTARS.2024.3412737.
    [6] WU Hanyi, ZHAO Chuanwu, ZHU Yu, et al. A multiscale examination of heat health risk inequality and its drivers in mega-urban agglomeration: A case study in the Yangtze River Delta, China[J]. Journal of Cleaner Production, 2024, 458: 142528. doi: 10.1016/j.jclepro.2024.142528.
    [7] WEI Haishuo, JIA Kun, WANG Qiao, et al. A remote sensing index for the detection of multi-type water quality anomalies in complex geographical environments[J]. International Journal of Digital Earth, 2024, 17(1): 2313695. doi: 10.1080/17538947.2024.2313695.
    [8] ROY D P, JIN Y, LEWIS P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005, 97(2): 137–162. doi: 10.1016/j.rse.2005.04.007.
    [9] 王立波, 高智, 王桥. 融合遥感指数协同推理的地表异常检测方法[J]. 电子与信息学报, 2025, 47(6): 1669–1678. doi: 10.11999/JEIT240882.

    WANG Libo, GAO Zhi, and WANG Qiao. A novel earth surface anomaly detection method based on collaborative reasoning of deep learning and remote sensing indexes[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1669–1678. doi: 10.11999/JEIT240882.
    [10] ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M and GeoRSCLIP: A large-scale vision- language dataset and a large vision-language model for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5642123. doi: 10.1109/TGRS.2024.3449154.
    [11] GE Junyao, ZHANG Xu, ZHENG Yang, et al. RSTeller: Scaling up visual language modeling in remote sensing with rich linguistic semantics from openly available data and large language models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 226: 146–163. doi: 10.1016/j.isprsjprs.2025.05.002.
    [12] ZHENG Zhuo, ZHONG Yanfei, WANG Junjue, et al. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters[J]. Remote Sensing of Environment, 2021, 265: 112636. doi: 10.1016/j.rse.2021.112636.
    [13] KYRKOU C and THEOCHARIDES T. EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1687–1699. doi: 10.1109/JSTARS.2020.2969809.
    [14] CHEN Boan, GAO Zhi, LI Ziyao, et al. Hierarchical GNN framework for earth’s surface anomaly detection in single satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5627314. doi: 10.1109/TGRS.2024.3408330.
    [15] CHEN Weiyu, LIU Yencheng, KIRA Z, et al. A closer look at few-shot classification[C]. Proceedings of the 2019 International Conference on Learning Representations, New Orleans, USA, 2019: 1–16.
    [16] SNELL J, SWERSKY K, and ZEMEL R. Prototypical networks for few-shot learning[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4080–4090.
    [17] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. Proceedings of the 34th International Conference on Machine Learning - Volume 70, Sydney, Australia, 2017: 1126–1135.
    [18] RADFORD A, KIM J, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 2021: 8748–8763.
    [19] XU Jingyi and LE H. Generating representative samples for few-shot classification[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8993–9003. doi: 10.1109/CVPR52688.2022.00880.
    [20] ZHANG Baoquan, LI Xutao, YE Yunming, et al. Prototype completion with primitive knowledge for few-shot learning[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3753–3761. doi: 10.1109/CVPR46437.2021.00375.
    [21] LIU Fan, CHEN Delong, GUAN Zhangqingyun, et al. RemoteCLIP: A vision language foundation model for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5622216. doi: 10.1109/TGRS.2024.3390838.
    [22] 张永军, 李彦胜, 党博, 等. 多模态遥感基础大模型: 研究现状与未来展望[J]. 测绘学报, 2024, 53(10): 1942–1954. doi: 10.11947/j.AGCS.2024.20240019.

    ZHANG Yongjun, LI Yansheng, DANG Bo, et al. Multi-modal remote sensing large foundation models: Current research status and future prospect[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1942–1954. doi: 10.11947/j.AGCS.2024.20240019.
    [23] OpenAI. 隆重推出ChatGPT[EB/OL]. https://openai.com/blog/chatgpt, 2022.
    [24] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C].Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17.
    [25] RUDNER T G J, RUSSWURM M, FIL J, et al. Multi3Net: Segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery[C]. The Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019, 33: 702–709. doi: 10.1609/aaai.v33i01.3301702.
    [26] 曾超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008–2020年)[J]. 中国科学数据, 2022, 7(2): 191–201. doi: 10.11922/noda.2021.0005.zh.

    ZENG Chao, CAO Zhenyu, SU Fenghuan, et al. A dataset of high-precision aerial imagery and interpretation of landslide and debris flow disaster in Sichuan and surrounding areas between 2008 and 2020[J]. China Scientific Data, 2022, 7(2): 195–205. doi: 10.11922/noda.2021.0005.zh.
    [27] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
    [28] LI Haifeng, CUI Zhenqi, ZHU Zhiqiang, et al. RS-MetaNet: Deep metametric learning for few-shot remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6983–6994. doi: 10.1109/TGRS.2020.3027387.
    [29] LI Lingjun, HAN Junwei, YAO Xiwen, et al. DLA-MatchNet for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7844–7853. doi: 10.1109/TGRS.2020.3033336.
    [30] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
    [31] MANGLA P, SINGH M, SINHA A, et al. Charting the right manifold: Manifold mixup for few-shot learning[C]. The 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 2207–2216. doi: 10.1109/WACV45572.2020.9093338.
    [32] NICHOL A, ACHIAM J, and SCHULMAN J. On first-order meta-learning algorithms[J]. arXiv preprint arXiv: 1803.02999, 2018. doi: 10.48550/arXiv.1803.02999.
    [33] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637–3645.
    [34] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208. doi: 10.1109/CVPR.2018.00131.
    [35] LI Xiaomin, SHI Daqian, DIAO Xiaolei, et al. SCL-MLNet: Boosting few-shot remote sensing scene classification via self-supervised contrastive learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5801112. doi: 10.1109/TGRS.2021.3109268.
    [36] CHENG Gong, CAI Liming, LANG Chunbo, et al. SPNet: Siamese-prototype network for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5608011. doi: 10.1109/TGRS.2021.3099033.
    [37] ZENG Qingjie, GENG Jie, JIANG Wen, et al. IDLN: Iterative distribution learning network for few-shot remote sensing image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8020505. doi: 10.1109/LGRS.2021.3109728.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-26
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回