高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可微稀疏掩膜引导的红外小目标快速检测网络

盛卫东 吴双林 肖超 龙云利 李晓斌 张一鸣

盛卫东, 吴双林, 肖超, 龙云利, 李晓斌, 张一鸣. 可微稀疏掩膜引导的红外小目标快速检测网络[J]. 电子与信息学报. doi: 10.11999/JEIT250989
引用本文: 盛卫东, 吴双林, 肖超, 龙云利, 李晓斌, 张一鸣. 可微稀疏掩膜引导的红外小目标快速检测网络[J]. 电子与信息学报. doi: 10.11999/JEIT250989
SHENG Weidong, WU Shuanglin, XIAO Chao, LONG Yunli, LI Xiaobin, ZHANG Yiming. Differentiable Sparse Mask Guided Infrared Small Target Fast Detection Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250989
Citation: SHENG Weidong, WU Shuanglin, XIAO Chao, LONG Yunli, LI Xiaobin, ZHANG Yiming. Differentiable Sparse Mask Guided Infrared Small Target Fast Detection Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250989

可微稀疏掩膜引导的红外小目标快速检测网络

doi: 10.11999/JEIT250989 cstr: 32379.14.JEIT250989
基金项目: 国家自然科学基金青年基金(C类)(项目号62501609)
详细信息
    作者简介:

    盛卫东:男,副研究员,研究方向为光学遥感图像弱小目标检测与跟踪技术

    吴双林:女,博士,研究方向为红外小目标检测技术

    肖超:男,助理研究员,研究方向为光学遥感图像弱小目标检测技术

    龙云利:男,高工,研究方向为红外弱小目标检测技术

    李晓斌:男,研究员,研究方向为卫星信息智能处理

    张一鸣:男,副研究员,研究方向为卫星信息智能处理

    通讯作者:

    肖超 xiaochao12@nudt.edu.cn

  • 中图分类号: TN911.73

Differentiable Sparse Mask Guided Infrared Small Target Fast Detection Network

Funds: National Natural Science Foundation of China under Grant No. 62501609
  • 摘要: 红外小目标检测在遥感探测、红外制导、环境监测等领域具有不可替代的应用价值,其核心挑战在于目标像素占比极小(目标尺寸通常小于9×9)、空间特征稀疏且易被复杂背景杂波淹没。现有红外小目标方法或依赖手工设计的背景抑制算子,难以适应复杂场景;或采用密集卷积神经网络,未充分考虑目标背景占比极不均衡导致的计算冗余。基于目标稀疏先验,本文提出一种可微稀疏掩膜引导的红外小目标快速检测网络。首先,设计可微稀疏掩膜生成模块作为预处理,输出目标候选区域的二值掩码,实现对目标的粗检测,并过滤大量背景冗余信息;其次,基于Minkowski Engine稀疏卷积构建稀疏特征提取模块,仅对二值掩码中的非零目标区域进行稀疏卷积运算,实现对目标候选区域的精细化处理;最后,通过金字塔池化模块进行多尺度特征融合,并将融合后的特征送入目标-背景二分类器输出最终检测结果。为验证方法有效性,在NUDT-SIRST与NUAA-SIRST两大主流红外小目标数据集上进行实验,实验结果表明,所提方法实现了在检测性能相当的情况下,实现了检测效率的极大改善,验证了所提方法的有效性。
  • 图  1  红外小目标典型场景及真值展示图

    图  2  本文所提方法的网络总体结构图

    图  3  可微稀疏掩膜生成模块示意图

    图  4  稀疏特征提取模块示意图

    图  5  不同检测方法可视化结果展示图

    图  6  可微稀疏掩膜生成模块生成的掩膜展示图

    表  1  在NUAA-SIRST和NUDT-SIRST数据下不同方法性能对比

    方法 NUAA-SIRST NUDT-SIRST #Params
    (M)
    Flops
    (G)
    FPS
    IoU (%) Pd (%) Fa (×10–6) IoU (%) Pd (%) Fa (×10–6)
    Top-Hat[22] 7.14 79.84 1012 20.72 78.41 166.70 - - 336.36
    IPI[4] 25.67 85.55 11.47 17.76 74.49 41.23 - - 0.12
    PSTNN[6] 22.40 77.95 29.11 14.85 66.13 44.17 - - 5.4
    MDvsFA[8] 60.30 89.35 56.35 74.14 90.47 25.34 3.92 264.96 4.72
    ACM[9] 70.33 93.91 3.73 67.08 95.97 10.18 0.52 0.43 180.32
    ISTDU[13] 58.83 89.91 40.63 78.80 97.04 21.51 2.76 7.44 134.28
    DNA-Net[7] 76.24 97.71 12.80 87.09 98.73 4.22 4.70 14.02 45.20
    RDIAN[14] 68.98 96.33 29.63 73.36 94.82 47.94 0.22 3.69 278.80
    HoLoCoNet[15] 73.89 100.00 19.87 80.90 97.67 13.54 0.70 6.60 125.49
    本文方法 74.38 100.00 7.98 83.03 97.67 9.81 0.35 11.10 215.06
    下载: 导出CSV

    表  2  在NUAA-SIRST数据集上对金字塔池化模块有效性验证的结果

    方法 IoU (%) Pd (%) Fa (×10–6) #Params
    (M)
    Flops
    (G)
    FPS
    消融模型 67.7 98.17 30.10 0.34 8.68 252.05
    本文方法 74.38 100.00 7.98 0.35 11.10 215.06
    下载: 导出CSV
  • [1] HAN Zonghao, ZHANG Ziye, ZHANG Shun, et al. Aerial visible-to-infrared image translation: Dataset, evaluation, and baseline[J]. Journal of Remote Sensing, 2023, 3: 0096. doi: 10.34133/remotesensing.0096.
    [2] WANG Qunming and HUANG Ruijie. RES-STF: Spatio temporal fusion of visible infrared imaging radiometer suite and landsat land surface temperature based on restormer[J]. Journal of Remote Sensing, 2024, 4: 0208. doi: 10.34133/remotesensing.0208.
    [3] 张晶晶, 曹思华, 崔文楠, 等. 基于改进顶帽变换的红外弱小目标检测[J]. 电子与信息学报, 2024, 46(1): 267–276. doi: 10.11999/JEIT221562.

    ZHANG Jingjing, CAO Sihua, CUI Wennan, et al. Improved top-hat transform-based algorithm for infrared dim and small target detection[J]. Journal of Electronics & Information Technology, 2024, 46(1): 267–276. doi: 10.11999/JEIT221562.
    [4] HAN Jinhui, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822–1826. doi: 10.1109/LGRS.2019.2954578.
    [5] CHEN C L P, LI Hong, WEI Yantao, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574–581. doi: 10.1109/TGRS.2013.2242477.
    [6] GAO Chenqiang, MENG Deyu, YANG Yi, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996–5009. doi: 10.1109/TIP.2013.2281420.
    [7] LIU Ting, YANG Jungang, LI Boyang, et al. Nonconvex tensor low-rank approximation for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5614718. doi: 10.1109/TGRS.2021.3130310.
    [8] ZHANG Landan and PENG Zhenming. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. doi: 10.3390/rs11040382.
    [9] LI Boyang, XIAO Chao, WANG Longguang, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745–1758. doi: 10.1109/TIP.2022.3199107.
    [10] WANG Huan, ZHOU Luping, and WANG Lei. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 8508–8517. doi: 10.1109/ICCV.2019.00860.
    [11] DAI Yimian, WU Yiquan, ZHOU Fei, et al. Asymmetric contextual modulation for infrared small target detection[C]. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2021: 949–958. doi: 10.1109/WACV48630.2021.00099.
    [12] DAI Yimian, WU Yiquan, ZHOU Fei, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813–9824. doi: 10.1109/TGRS.2020.3044958.
    [13] ZHANG Mingjin, ZHANG Rui, YANG Yuxiang, et al. ISNet: Shape matters for infrared small target detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 867–876. doi: 10.1109/CVPR52688.2022.00095.
    [14] WU Xin, HONG Danfeng, CHANUSSOT J. UIU-net: U-net in U-net for infrared small object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 364–376. doi: 10.1109/TIP.2022.3228497.
    [15] HOU Qingyu, ZHANG Liuwei, TAN Fanjiao, et al. ISTDU-Net: Infrared small-target detection U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7506205. doi: 10.1109/LGRS.2022.3141584.
    [16] SUN Heng, BAI Junxiang, YANG Fan, et al. Receptive-field and direction induced attention network for infrared dim small target detection with a large-scale dataset IRDST[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5000513. doi: 10.1109/TGRS.2023.3235150.
    [17] CHEN Gao, WANG Zhuang, WANG Weihua, et al. Holistic modularization of local contrast in the end-to-end network for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 7001305. doi: 10.1109/LGRS.2023.3320191.
    [18] ZHANG Mingjin, YUE Ke, LI Boyang, et al. Single-frame infrared small target detection via Gaussian curvature inspired network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5005013. doi: 10.1109/TGRS.2024.3423492.
    [19] REN Xiangyang, JIAO Boyang, PENG Zhenming, et al. MSFFNet: A multilevel sparse feature fusion network for infrared dim small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 147–159. doi: 10.1109/JSTARS.2024.3488698.
    [20] ZHANG Luping, LUO Junhai, HUANG Yian, et al. MDIGCNet: Multidirectional information-guided contextual network for infrared small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 2063–2076. doi: 10.1109/JSTARS.2024.3508255.
    [21] HU Chen, HUANG Yian, LI Kexuan, et al. DATransNet: Dynamic attention transformer network for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 7001005. doi: 10.1109/LGRS.2025.3557021.
    [22] LIAO Minghui, ZOU Zhisheng, WAN Zhaoyi, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 919–931. doi: 10.1109/TPAMI.2022.3155612.
    [23] SMITH L N and TOPIN N. Super-convergence: Very fast training of neural networks using large learning rates[C]. Proceedings Volume 11006, Artificial Intelligence and Machine Learning for Multi-domain Operations Applications, Baltimore, United States, 2019: 369–386. doi: 10.1117/12.2520589.
    [24] RIVEST J F and FORTIN R. Detection of dim targets in digital infrared imagery by morphological image processing[J]. Optical Engineering, 1996, 35(7): 1886–1893. doi: 10.1117/1.600620.
    [25] WU Shuanglin, XIAO Chao, WANG Yingqian, et al. Sparsity-aware global channel pruning for infrared small-target detection networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5615011. doi: 10.1109/TGRS.2025.3544645.
    [26] CHUNG W Y, LEE I H, PARK C G. Lightweight infrared small target detection network using full-scale skip connection U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 7000705. doi: 10.1109/LGRS.2023.3276326.
    [27] KOU Renke, WANG Chunping, YU Ying, et al. LW-IRSTNet: Lightweight infrared small target segmentation network and application deployment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5621313. doi: 10.1109/TGRS.2023.3314586.
    [28] MA Tianlei, YANG Zhen, SONG Yifan, et al. DMEF-Net: Lightweight infrared dim small target detection network for limited samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5626015. doi: 10.1109/TGRS.2023.3333378.
    [29] ZHANG Mingjin, YANG Handi, GUO Jie, et al. IRPruneDet: Efficient infrared small target detection via wavelet structure-regularized soft channel pruning[C]. Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 7224–7232. doi: 10.1609/aaai.v38i7.28551.
    [30] LI Boyang, WANG Longguang, WANG Yingqian, et al. Mixed-precision network quantization for infrared small target segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5000812. doi: 10.1109/TGRS.2023.3346904.
    [31] XIAO Chao, AN Wei, ZHANG Yifan, et al. Highly efficient and unsupervised framework for moving object detection in satellite videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 11532–11539. doi: 10.1109/TPAMI.2024.3409824.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-24
  • 修回日期:  2025-12-08
  • 录用日期:  2025-12-08
  • 网络出版日期:  2025-12-11

目录

    /

    返回文章
    返回