高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高维特征随机森林的雷达扫描方式自主识别方法

吴康徽 郭子薰 范一飞 谢坚 陶明亮

吴康徽, 郭子薰, 范一飞, 谢坚, 陶明亮. 基于高维特征随机森林的雷达扫描方式自主识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT250985
引用本文: 吴康徽, 郭子薰, 范一飞, 谢坚, 陶明亮. 基于高维特征随机森林的雷达扫描方式自主识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT250985
WU Kanghui, GUO Zixun, FAN Yifei, XIE Jian, TAO Mingliang. Autonomous Radar Scan-Mode Recognition Method Based on High-Dimensional Features and Random Forest[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250985
Citation: WU Kanghui, GUO Zixun, FAN Yifei, XIE Jian, TAO Mingliang. Autonomous Radar Scan-Mode Recognition Method Based on High-Dimensional Features and Random Forest[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250985

基于高维特征随机森林的雷达扫描方式自主识别方法

doi: 10.11999/JEIT250985 cstr: 32379.14.JEIT250985
基金项目: 国家自然科学基金(62301435 and 62571444)
详细信息
    作者简介:

    吴康徽:男,硕士研究生,研究方向为电子侦察,机器学习

    郭子薰:女,副教授,研究方向为目标智能探测与侦察

    范一飞:男,副研究员,研究方向为雷达信号处理、雷达信号分选

    谢坚:男,教授,研究方向为电子侦察定位理论及应用、阵列信号处理理论及应用

    陶明亮:男,教授,主要研究方向为目标智能探测与侦察

    通讯作者:

    郭子薰 zxguo@nwpu.edu.cn

  • 中图分类号: XXX

Autonomous Radar Scan-Mode Recognition Method Based on High-Dimensional Features and Random Forest

Funds: Item1, Item2, Item3
  • 摘要: 在非协作电子侦察条件(被动截获、无先验/不同步、参数随任务时变且电磁环境拥挤)下,快速、稳健地区分雷达扫描方式是实现威胁评估、资源调度与对抗策略生成的重要环节。因此,面向非协作场景下的雷达扫描方式识别,本文围绕机械扫描(机扫)与相控阵电子扫描(相扫)的物理差异,提出一套时–频–图多域自主特征体系。时域方面,建立变异系数、总变差、高斯拟合度、主瓣相对宽度,用于度量平滑/跳变和形态规整度;频域方面,采用谱平坦度刻画能量集中与分散;图结构方面,将幅度序列映射为水平可见性图,并计算全局聚类系数与归一化度熵,以捕获由序列形状诱发的全局拓扑模式。结合所提出的7个有效差异性特征,形成7维特征向量,随后结合随机森林算法,完成扫描方式识别。基于包含机扫与相扫、覆盖多信噪比条件、含到达时间抖动与多普勒的合成对照数据,实验结果表明,所提方法实现了97.59%的识别准确率,并在低信噪比条件下仍具稳健分辨力,充分验证了方案可行性。
  • 图  1  侦收场景示意图

    图  2  机扫情况下的PA序列

    图  3  相扫情况下的PA序列

    图  4  机扫与相扫的时域特征分布

    图  5  机扫与相扫的SFM取值直方图

    图  6  序列构建水平可见性图的示意

    图  7  机扫与相扫的图特征分布

    图  8  随机森林构建示意图

    图  9  随机森林的判决过程

    图  10  面向高维自主特征随机森林的非协作雷达扫描方式智能识别方法的流程图

    图  11  所提方法与其他方法的比较

    图  12  单特征与全特征情况的比较

    图  13  单域特征、跨域特征和全特征情况比较

    图  14  两类PRI目标的识别性能对比

    表  1  单特征识别准确率

    特征CVTVGFDRWSFMGCCNDE全特征
    准确率0.66170.8220.66950.55950.91610.57230.80650.9759
    下载: 导出CSV
  • [1] 何芸倩. 基于机器学习的多功能雷达辐射源识别技术研究[D]. [硕士论文], 电子科技大学, 2025. doi: 10.27005/d.cnki.gdzku.2025.001418.

    HE Yunqian. Research on multifunction radar emitter identification technology based on machine learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2025. doi: 10.27005/d.cnki.gdzku.2025.001418.
    [2] 李燕平. 机械扫描雷达的DBS成像和动目标检测研究[D]. [硕士论文], 西安电子科技大学, 2006. doi: 10.7666/d.Y1137370.

    LI Yanping. Study of DBS imaging and moving targets detection in mechanical scanning radar[D]. [Master dissertation], Xidian University, 2006. doi: 10.7666/d.Y1137370.
    [3] 陈舒敏, 郑文文, 杨程, 等. 机扫二维相控阵雷达自适应资源调度算法研究[J]. 舰船电子对抗, 2025, 48(1): 51–58. doi: 10.16426/j.cnki.jcdzdk.2025.01.009.

    CHEN Shumin, ZHENG Wenwen, YANG Cheng, et al. Research on adaptive resource scheduling algorithm for two-dimensional mechanical scanning phased array radar[J]. Shipboard Electronic Countermeasure, 2025, 48(1): 51–58. doi: 10.16426/j.cnki.jcdzdk.2025.01.009.
    [4] 嵇慧明, 于昊, 宋帅, 等. 基于改进粗糙集-云模型理论的空战态势评估[J]. 战术导弹技术, 2019(4): 20–27. doi: 10.16358/j.issn.1009-1300.2019.9.038.

    JI Huiming, YU Hao, SONG Shuai, et al. Air combat situation assessment based on improved rough set–cloud model theory[J]. Tactical Missile Technology, 2019(4): 20–27. doi: 10.16358/j.issn.1009-1300.2019.9.038.
    [5] 张文峰, 牟皓, 赵耀东, 等. 基于SVM与DNN的雷达扫描体制识别方法[J]. 电子信息对抗技术, 2022, 37(2): 33–37. doi: 10.3969/j.issn.1674-2230.2022.02.009.

    ZHANG Wenfeng, MU Hao, ZHAO Yaodong, et al. Intelligent recognition of mechanical scanned radar and electronically scanned array based on support vector machine and deep neural network[J]. Electronic Information Warfare Technology, 2022, 37(2): 33–37. doi: 10.3969/j.issn.1674-2230.2022.02.009.
    [6] 郭国华, 何明浩, 韩俊, 等. 基于脉幅信息的相控阵体制雷达识别技术[J]. 中国电子科学研究院学报, 2009, 4(6): 589–593. doi: 10.3969/j.issn.1673-5692.2009.06.008.

    GUO Guohua, HE Minghao, HAN Jun, et al. Phased-array radar recognition technology based on pulse amplitude[J]. Journal of China Academy of Electronics and Information Technology, 2009, 4(6): 589–593. doi: 10.3969/j.issn.1673-5692.2009.06.008.
    [7] 张玉虎, 周正. 基于信号聚集度的相控阵雷达识别技术[J]. 火力与指挥控制, 2018, 43(8): 22–24,30. doi: 10.3969/j.issn.1002-0640.2018.08.005.

    ZHANG Yuhu and ZHOU Zheng. Recognition of phased-array radar based on analysis of aggregation degree[J]. Fire Control & Command Control, 2018, 43(8): 22–24,30. doi: 10.3969/j.issn.1002-0640.2018.08.005.
    [8] 叶巍, 牟连云, 李仙茂. 基于脉冲包络的相控阵雷达识别技术研究[J]. 航天电子对抗, 2011, 27(1): 41–44,57. doi: 10.3969/j.issn.1673-2421.2011.01.012.

    YE Wei, MU Lianyun, and LI Xianmao. Phased-array radar recognition technology study based on the resemble coefficient of pulse amplitude contour[J]. Aerospace Electronic Warfare, 2011, 27(1): 41–44,57. doi: 10.3969/j.issn.1673-2421.2011.01.012.
    [9] 李程, 王伟, 施龙飞, 等. 雷达天线扫描方式的自动识别方法[J]. 国防科技大学学报, 2014, 36(3): 156–163. doi: 10.11887/j.cn.201403028.

    LI Cheng, WANG Wei, SHI Longfei, et al. Automatic recognition method of radar antenna scan type[J]. Journal of National University of Defense Technology, 2014, 36(3): 156–163. doi: 10.11887/j.cn.201403028.
    [10] GREER T H. Automatic recognition of radar scan type[P]. US, 6697007B2, 2004.
    [11] BARSHAN B and ERAVCI B. Automatic radar antenna scan type recognition in electronic warfare[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 2908–2931. doi: 10.1109/TAES.2012.6324669.
    [12] QUAN Wei, LI Ping, and XU Fengkai. An algorithm of signal sorting and recognition of phased array radars[C]. Proceedings of the IEEE 10th International Conference on Signal Processing, Beijing, China, 2010: 1877–1880. doi: 10.1109/ICOSP.2010.5657138.
    [13] 高刚, 孙盼杰, 刘正彬. 基于脉冲幅度及频率分析的雷达扫描方式识别[J]. 电子信息对抗技术, 2016, 31(6): 12–17. doi: 10.3969/j.issn.1674-2230.2016.06.003.

    GAO Gang, SUN Panjie, and LIU Zhengbin. Automatic radar antenna scan type recognition based on analysis of pluses amplitude and frequency[J]. Electronic Information Countermeasure Technology, 2016, 31(6): 12–17. doi: 10.3969/j.issn.1674-2230.2016.06.003.
    [14] ZENG Jie and TANG Jinjun. Modeling dynamic traffic flow as visibility graphs: A network-scale prediction framework for lane-level traffic flow based on LPR data[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4173–4188. doi: 10.1109/TITS.2022.3231959.
    [15] 李牛牛, 张云华. 基于可见图和全局相似度的时间序列预测分析[J]. 集成电路应用, 2025, 42(3): 348–351. doi: 10.19339/j.issn.1674-2583.2025.03.148.

    LI Niuniu and ZHANG Yunhua. Analysis of time series forecasting based on visibility graph and global similarity[J]. Application of IC, 2025, 42(3): 348–351. doi: 10.19339/j.issn.1674-2583.2025.03.148.
    [16] ROY S S and CHATTERJEE S. Partial discharge detection framework employing spectral analysis of horizontal visibility graph[J]. IEEE Sensors Journal, 2021, 21(4): 4819–4826. doi: 10.1109/JSEN.2020.3028849.
    [17] LI Jingchen, SHI Haobin, CHEN Wenbai, et al. Semi-supervised detection model based on adaptive ensemble learning for medical images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 237–248. doi: 10.1109/TNNLS.2023.3282809.
    [18] 陈俊英, 席月芸, 徐琳, 等. 基于MLP集成随机子空间决策树的航空发动机剩余使用寿命预测[J]. 航空发动机, 2024, 50(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2024.06.012.

    CHEN Junying, XI Yueyun, XU Lin, et al. Remaining useful life prediction of aeroengines based on MLP integrated random subspace decision trees[J]. Aeroengine, 2024, 50(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2024.06.012.
    [19] 王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49–55. doi: 10.3969/j.issn.1674-1285.2018.01.009.

    WANG Yisen and XIA Shutao. A survey of random forests algorithms[J]. Information and Communications Technology, 2018, 12(1): 49–55. doi: 10.3969/j.issn.1674-1285.2018.01.009.
    [20] YANG Yi, SUN Yan, LI Feng, et al. MGCNRF: Prediction of disease-related miRNAs based on multiple graph convolutional networks and random forest[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15701–15709. doi: 10.1109/TNNLS.2023.3289182.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-30
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回