高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LightMamba:一种轻量级Mamba用于高光谱图形和激光雷达数据联合分类网络

廖帝灵 赖涛 黄海风 王青松

廖帝灵, 赖涛, 黄海风, 王青松. LightMamba:一种轻量级Mamba用于高光谱图形和激光雷达数据联合分类网络[J]. 电子与信息学报. doi: 10.11999/JEIT250981
引用本文: 廖帝灵, 赖涛, 黄海风, 王青松. LightMamba:一种轻量级Mamba用于高光谱图形和激光雷达数据联合分类网络[J]. 电子与信息学报. doi: 10.11999/JEIT250981
LIAO Diling, LAI Tao, HUANG Haifeng, WANG Qingsong. LightMamba: A Lightweight Mamba Network for the Joint Classification of HSI and LiDAR Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250981
Citation: LIAO Diling, LAI Tao, HUANG Haifeng, WANG Qingsong. LightMamba: A Lightweight Mamba Network for the Joint Classification of HSI and LiDAR Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250981

LightMamba:一种轻量级Mamba用于高光谱图形和激光雷达数据联合分类网络

doi: 10.11999/JEIT250981 cstr: 32379.14.JEIT250981
基金项目: 国家自然科学基金(62273365),“小米青年学者”项目
详细信息
    作者简介:

    廖帝灵:男,博士,研究方向为多模态图像融合深度学习、高光谱图像处理、遥感场景图像分类

    赖涛:男,副教授,研究方向为超宽带轨道式SAR成像雷达系统设计与信息处理、地基形变监测SAR系统设计与信息处理

    黄海风:男,教授,研究方向空间电子学和智能传感领域的基础理论及关键技术

    王青松:男,教授,研究方向为遥感图像精化处理、协同探测感知与信息融合

    通讯作者:

    王青松 wangqs5@mail.sysu.edu.cn

  • 11)https://www.grss-ieee.org/technical-committees/image-analysis-and-data-fusion/?tab=past-data-fusion-contests.2)https://dataserv.ub.tum.de/index.php/s/m1657312.
  • 中图分类号: TN911.73; TP751

LightMamba: A Lightweight Mamba Network for the Joint Classification of HSI and LiDAR Data

Funds: The National Natural Science Foundation of China (62273365), Xiaomi Young Talents Program
  • 摘要: 高光谱图像(HSI)和激光雷达(LiDAR)数据的联合分类是遥感领域的一项关键任务,它通过融合丰富的光谱信息和精确的三维结构信息,显著提升了对地物识别的精度。然而,现有的基于深度学习(DL)的联合分类方法依然受限于高模型计算复杂度。因此,该文提出一种新颖的轻量级Mamba网络。该网络的核心是引入了先进的状态空间模型(SSM),其线性计算复杂度特性使其能够高效地建模遥感数据中的长距离上下文依赖关系。首先,多源对齐模块被用于对异构的HSI和LiDAR数据进行特征提取与空间-光谱维对齐,以提供一致的特征表示;其次,多源轻量Mamba模块以LiDAR的高程信息作为引导,采用轻量化设计融合双流序列,高效建模长距离依赖;最后,设计了一种基于MLP的分类器,并输出分类结果。在多个公开基准数据集上的实验结果表明,与当前先进方法相比,LightMamba在分类精度上取得了显著提升,同时保持了更低的计算复杂度,证明了基于Mamba的架构在遥感多源数据融合与分类任务中的巨大潜力。LightMamba的代码可访问https://www.scidb.cn/detail?dataSetId=064dc4ac5350418e87a8b82dd324737b&version=V1&code=j00173
  • 图  1  LightMamba网络结构

    图  2  基于多源权重共享的多源对齐模块结构

    图  3  详细流程图($ \varDelta $和$ \varDelta ' $分别表示HSI和LiDAR数据的离散步长)

    图  4  Houston 2013数据集上不同方法的分类图

    图  5  Augsburg数据集上不同方法的分类图

    图  6  不同方法准确率、模型复杂度和计算效率的比较

    图  7  不同方法输入空间大小对性能的影响

    表  1  两种数据集详细信息

    类别HoustonAugsburg
    名称训练测试
    名称训练测试
    C1健康草地201231林地2013487
    C2受胁迫草地201234住宅区2030309
    C3人造草地20677工业区203831
    C4树木201224低矮植被2026837
    C5土壤201222社区园地20555
    C6水体20305商业区201625
    C7住宅区201248水体201510
    C8商业区201224
    C9普通道路201232
    C10高速公路201207
    C11铁路201215
    C12停车场1201213
    C13停车场220449
    C14网球场20408
    C15塑胶跑道20640
    -总计30014729总计14078154
    下载: 导出CSV

    表  2  LightMamba方法中不同模块对分类精度OA值的影响

    情况 组成成分 Houston Augsburg
    MSAM 1个MSLMM 2个MSLMM OA(%) OA(%)
    1 81.28 75.96
    2 93.86 85.50
    3 94.30 87.41
    下载: 导出CSV

    表  3  对Houston数据集采用不同方法获得的分类结果进行比较(最佳结果以粗体显示)(%)

    类别HSI+LiDAR本文方法
    CoupledCNNGAMFHCTMFTCross-HLS2CrossMambaLightMamba
    C193.0199.5992.9396.9197.9790.7594.55
    C296.6897.3398.6294.9789.8798.6893.67
    C399.8599.8599.8510098.8299.6999.11
    C488.2393.8799.3491.3399.7596.0194.52
    C595.4999.6799.6797.7010099.75100
    C697.7092.1398.6810094.09100100
    C781.3381.4198.7176.8491.5139.4991.34
    C883.0085.9476.8771.3277.0496.8486.68
    C970.8679.3876.1382.2285.9528.0590.58
    C1080.1974.1568.6894.0397.1074.2294.11
    C1189.6287.4894.8989.9581.6488.2097.36
    C1279.2287.8846.6692.8292.9144.4290.51
    C1382.2093.7697.5598.4495.3210096.21
    C1410099.2610099.2610099.74100
    C1598.9010099.3791.0910080.32100
    OA87.8390.2187.6790.2292.5078.7494.30
    AA89.7691.4589.8791.8093.4782.4195.25
    K×10086.8689.4186.6989.4391.9077.2393.83
    下载: 导出CSV

    表  4  对Augsburg数据集采用不同方法获得的分类结果进行比较(最佳结果以粗体显示)(%)

    类别HSI+LiDAR本文方法
    CoupledCNNGAMFHCTMFTCross-HLS2CrossMambaLightMamba
    C196.5794.5295.6992.1796.3696.0492.17
    C278.6264.5083.6573.8085.7892.4393.07
    C366.5641.0072.9540.1771.8685.6662.85
    C490.0686.3085.8259.1680.8178.6885.21
    C589.3698.0196.9364.8669.5790.9987.74
    C640.8678.1530.4664.8638.2152.1248.12
    C775.7665.4380.6663.9757.0858.5474.43
    OA84.3076.5684.8869.8683.3386.5087.41
    AA76.8375.4278.0365.5766.6779.2177.66
    K×10078.5869.0979.3660.3376.5781.3182.30
    下载: 导出CSV
  • [1] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3): 652–675. doi: 10.1109/jproc.2012.2197589.
    [2] ZHANG Xia, SUN Yanli, SHANG Kun, et al. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4117–4128. doi: 10.1109/jstars.2016.2577339.
    [3] GHAMISI P, PLAZA J, CHEN Yushi, et al. Advanced spectral classifiers for hyperspectral images: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1): 8–32. doi: 10.1109/mgrs.2016.2616418.
    [4] PRICOPE N G, HALLS J N, DALTON E G, et al. Precision mapping of coastal wetlands: An integrated remote sensing approach using unoccupied aerial systems light detection and ranging and multispectral data[J]. Journal of Remote Sensing, 2024, 4: 0169. doi: 10.34133/remotesensing.0169.
    [5] SHI Cuiping, LIAO Diling, ZHANG Tianyu, et al. Hyperspectral image classification based on expansion convolution network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5528316. doi: 10.1109/tgrs.2022.3174015.
    [6] LIU Wenping, ZHANG Yuxiang, and DONG Yanni. Multifeature collaborative attention dynamic hypergraph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5522115. doi: 10.1109/tgrs.2025.3598375.
    [7] LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
    [8] ZHAO Xudong, TAO Ran, LI Wei, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355–7370. doi: 10.1109/tgrs.2020.2982064.
    [9] LI Zhi, ZHENG Ke, GAO Lianru, et al. Feature reconstruction guided fusion network for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4408914. doi: 10.1109/tgrs.2025.3562246.
    [10] GAO Hongmin, YANG Yao, LI Chenming, et al. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3396–3408. doi: 10.1109/tgrs.2020.3008286.
    [11] HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5518615. doi: 10.1109/tgrs.2021.3130716.
    [12] WANG Minhui, SUN Yaxiu, XIANG Jianhong, et al. CITNet: Convolution interaction transformer network for hyperspectral and LiDAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5535918. doi: 10.1109/tgrs.2024.3477965.
    [13] PAN Yukai, WU Nan, and JIN Wei. Multimodal feature disentangle-fusion network for hyperspectral and LiDAR data classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5510905. doi: 10.1109/lgrs.2024.3492252.
    [14] ZHU Fei, SHI Cuiping, SHI Kaijie, et al. Joint classification of hyperspectral and LiDAR data using hierarchical multimodal feature aggregation-based multihead axial attention transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5503817. doi: 10.1109/tgrs.2025.3533475.
    [15] GU A, GOEL K, and RÉ C. Efficiently modeling long sequences with structured state spaces[C]. Proceedings of the 10th International Conference on Learning Representations, 2022.
    [16] HE Yan, TU Bingtu, LIU Bo, et al. HSI-MFormer: Integrating mamba and transformer experts for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5621916. doi: 10.1109/tgrs.2025.3564167.
    [17] ZHUANG Peixian, ZHANG Xiaochen, WANG Hao, et al. FAHM: Frequency-aware hierarchical mamba for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 6299–6313. doi: 10.1109/jstars.2025.3539791.
    [18] LIAO Diling, WANG Qingsong, LAI Tao, et al. Joint classification of hyperspectral and LiDAR data based on mamba[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5530915. doi: 10.1109/tgrs.2024.3459709.
    [19] HE Yan, TU Bing, JIANG Puzhao, et al. Classification of multisource remote sensing data using slice mamba[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5505414. doi: 10.1109/tgrs.2025.3538553.
    [20] ZHANG Guanglian, ZHANG Zhanxu, DENG Jiangwei, et al. S2CrossMamba: Spatial–spectral cross-mamba for multimodal remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5510705. doi: 10.1109/lgrs.2024.3488036.
    [21] HANG Renlong, LI Zhu, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939–4950. doi: 10.1109/tgrs.2020.2969024.
    [22] CAI Jianghui, ZHANG Min, YANG Haifeng, et al. A novel graph-attention based multimodal fusion network for joint classification of hyperspectral image and LiDAR data[J]. Expert Systems with Applications, 2024, 249: 123587. doi: 10.1016/j.eswa.2024.123587.
    [23] ZHAO Guangrui, YE Qiaolin, SUN Len, et al. Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5500716. doi: 10.1109/tgrs.2022.3232498.
    [24] HOFFMANN D S, CLASEN K N, and DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 4891–4894. doi: 10.1109/igarss52108.2023.10281927.
    [25] ROY S K, SUKUL A, JAMALI A, et al. Cross hyperspectral and LiDAR attention transformer: An extended self-attention for land use and land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5512815. doi: 10.1109/tgrs.2024.3374324.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  35
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-25
  • 修回日期:  2025-12-30
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回