高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顾及灰度-梯度双通道特征与形变参数优化的陆标匹配方法

徐昌定 刘世杰 肖长江

徐昌定, 刘世杰, 肖长江. 顾及灰度-梯度双通道特征与形变参数优化的陆标匹配方法[J]. 电子与信息学报. doi: 10.11999/JEIT250953
引用本文: 徐昌定, 刘世杰, 肖长江. 顾及灰度-梯度双通道特征与形变参数优化的陆标匹配方法[J]. 电子与信息学报. doi: 10.11999/JEIT250953
XU Changding, LIU Shijie, XIAO Changjiang. A Landmark Matching Method Considering Gray–Gradient Dual-Channel Features and Deformation Parameter Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250953
Citation: XU Changding, LIU Shijie, XIAO Changjiang. A Landmark Matching Method Considering Gray–Gradient Dual-Channel Features and Deformation Parameter Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250953

顾及灰度-梯度双通道特征与形变参数优化的陆标匹配方法

doi: 10.11999/JEIT250953 cstr: 32379.14.JEIT250953
基金项目: 国家自然科学基金(42530113, 42171432, 42471395),上海市“科技创新行动计划”自然科学基金 (24ZR1471000),中央高校基本科研业务费
详细信息
    作者简介:

    徐昌定:男,硕士生,研究方向为深空探测航天器视觉自主导航

    刘世杰:男,教授,研究方向为航天精准测绘遥感

    肖长江:男,副教授,研究方向为多源时空数据智能处理、深空探测自主着陆避障、巡视导航定位与制图

    通讯作者:

    刘世杰 liusjtj@tongji.edu.cn

  • 中图分类号: TN911; TP391.41; V448.2

A Landmark Matching Method Considering Gray–Gradient Dual-Channel Features and Deformation Parameter Optimization

Funds: National Natural Science Foundation of China (42530113, 42171432, 42471395), The Natural Science Foundation General Program of Shanghai Science and Technology Innovation Action Plan (24ZR1471000), Fundamental Research Funds for the Central Universities
  • 摘要: 面向深空探测任务对光学自主导航定位的迫切需求,该文提出一种融合影像灰度与梯度幅值双通道特征,并结合形变参数优化的陆标匹配算法。该方法将匹配问题转换为非线性函数求解问题,以陆标与着陆器影像在灰度与梯度特征上的差异最小化为目标,构建非线性函数,并采用Levenberg–Marquardt算法迭代求解最优形变参数,从而获得陆标在着陆影像上精确的匹配位置。实验结果表明,即便在存在多种先验误差的情况下,该方法仍能以亚秒级的速度实现鲁棒匹配,平均匹配误差模长为1.03像素。研究结果充分验证了该算法在高精度与高实时性陆标匹配任务中的有效性,可为无卫星导航条件下的月球着陆定位提供可靠的技术支撑。
  • 图  1  总体技术方案流程图

    图  2  部分仿真影像、陆标及对应陆标掩膜数据

    图  3  陆标匹配效果图

    图  4  不同匹配方法效果对比

    图  5  各匹配算法在误差、耗时与成功率上的比较分析

    表  1  不同匹配方法指标对比

    方法x方向平均绝对偏差(像素)y方向平均绝对偏差(像素)平均耗时(s)匹配成功率(%)
    卷积加速归一化互相关2.413.370.6189.51
    基于图像增强技术的SURF特征匹配0.560.541.1248.95
    全局与局部优化的归一化互相关4.544.924.41100.00
    本文方法0.840.600.58100.00
    下载: 导出CSV
  • [1] LIN Yangting, YANG Wei, ZHANG Hui, et al. Return to the moon: New perspectives on lunar exploration[J]. Science Bulletin, 2024, 69(13): 2136–2148. doi: 10.1016/j.scib.2024.04.051.
    [2] 余后满, 饶炜, 张益源, 等. “嫦娥七号”探测器任务综述[J]. 深空探测学报(中英文), 2023, 10(6): 567–576. doi: 10.15982/j.issn.2096-9287.2023.20230119.

    YU Houman, RAO Wei, ZHANG Yiyuan, et al. Mission analysis and spacecraft design of Chang’e-7[J]. Journal of Deep Space Exploration, 2023, 10(6): 567–576. doi: 10.15982/j.issn.2096-9287.2023.20230119.
    [3] 童小华, 刘世杰, 谢欢, 等. 从地球测绘到地外天体测绘[J]. 测绘学报, 2022, 51(4): 488–500.

    TONG Xiaohua, LIU Shijie, XIE Huan, et al. From Earth mapping to extraterrestrial planet mapping[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488–500.
    [4] MOURIKIS A I, TRAWNY N, ROUMELIOTIS S I, et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics, 2009, 25(2): 264–280. doi: 10.1109/TRO.2009.2012342.
    [5] SIMON A B, MAJJI M, RESTREPO C I, et al. A comparison of feature extraction methods for terrain relative navigation[C]. AIAA Scitech 2020 Forum, Orlando, USA, 2020: 0601. doi: 10.2514/6.2020-0601.
    [6] 胡荣海, 黄翔宇, 徐超. 小天体近距离视觉导航的陆标鲁棒匹配方法[J]. 深空探测学报(中英文), 2022, 9(4): 407–416. doi: 10.15982/j.issn.2096-9287.2022.20220019.

    HU Ronghai, HUANG Xiangyu, and XU Chao. Robust landmark matching method for visual navigation near small bodies[J]. Journal of Deep Space Exploration, 2022, 9(4): 407–416. doi: 10.15982/j.issn.2096-9287.2022.20220019.
    [7] 华宝成, 李琦, 徐昌定, 等. 嫦娥六号降落图像导航定位技术[J]. 空间控制技术与应用, 2024, 50(6): 57–63. doi: 10.3969/j.issn.1674-1579.2024.06.007.

    HUA Baocheng, LI Qi, XU Changding, et al. Visual navigation and positioning technology for Chang’e-6 descent[J]. Aerospace Control and Application, 2024, 50(6): 57–63. doi: 10.3969/j.issn.1674-1579.2024.06.007.
    [8] 张成渝, 梁潇, 华宝成, 等. 一种小行星探测陆标导航方法[J]. 空间控制技术与应用, 2021, 47(1): 78–86. doi: 10.3969/j.issn.1674-1579.2021.01.011.

    ZHANG Chengyu, LIANG Xiao, HUA Baocheng, et al. A landmark navigation method for asteroid exploration[J]. Aerospace Control and Application, 2021, 47(1): 78–86. doi: 10.3969/j.issn.1674-1579.2021.01.011.
    [9] BAY H, TUYTELAARS T, and VAN GOOL L. SURF: Speeded up robust features[C]. The 9th European Conference on Computer Vision, Graz, Austria, 2006: 404–417. doi: 10.1007/11744023_32.
    [10] DETONE D, MALISIEWICZ T, and RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 337–33712. doi: 10.1109/CVPRW.2018.00060.
    [11] ONO Y, TRULLS E, FUA P, et al. LF-Net: Learning local features from images[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 6237–6247.
    [12] SARLIN P E, CADENA C, SIEGWART R, et al. From coarse to fine: Robust hierarchical localization at large scale[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12708–12717. doi: 10.1109/CVPR.2019.01300.
    [13] WANG Yaqiong, XIE Huan, HUANG Qian, et al. A novel approach for multiscale lunar crater detection by the use of path-profile and isolation forest based on high-resolution planetary images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4601424. doi: 10.1109/TGRS.2022.3153721.
    [14] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [15] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [16] MUHAMMAD U, WANG Weiqiang, CHATTHA S P, et al. Pre-trained VGGNet architecture for remote-sensing image scene classification[C]. 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 1622–1627. doi: 10.1109/ICPR.2018.8545591.
    [17] SAKAI S, KUSHIKI K, SAWAI S, et al. Moon landing results of SLIM: A smart Lander for investigating the moon[J]. Acta Astronautica, 2025, 235: 47–54. doi: 10.1016/j.actaastro.2025.05.047.
    [18] LIU Shijie, CHU Guanghan, XU Changding, et al. Lunar crater matching with triangle-based global second-order similarity for precision navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4600817. doi: 10.1109/TGRS.2025.3598104.
    [19] LOURAKIS M I A. A brief description of the Levenberg-Marquardt algorithm implemened by Levmar[R]. Foundation for Research and Technology, 2005: 1–6.
    [20] TONG Xiaohua, HUANG Qian, LIU Shijie, et al. A high-precision horizon-based illumination modeling method for the lunar surface using pyramidal LOLA data[J]. Icarus, 2023, 390: 115302. doi: 10.1016/j.icarus.2022.115302.
    [21] 张一梵. 基于灰度相关的快速模板匹配算法研究[D]. [硕士论文], 广州大学, 2022. doi: 10.27040/d.cnki.ggzdu.2022.001434.

    ZHANG Yifan. Research on fast template matching algorithm based on gray-level correlation[D]. [Master dissertation], Guangzhou University, 2022. doi: 10.27040/d.cnki.ggzdu.2022.001434.
    [22] 张明浩, 杨耀权, 靳渤文. 基于图像增强技术的SURF特征匹配算法研究[J]. 自动化与仪表, 2019, 34(9): 98–102. doi: 10.19557/j.cnki.1001-9944.2019.09.023.

    ZHANG Minghao, YANG Yaoquan, and JIN Bowen. Research on SURF feature matching algorithm based on image enhancement technology[J]. Automation & Instrumentation, 2019, 34(9): 98–102. doi: 10.19557/j.cnki.1001-9944.2019.09.023.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  35
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-04

目录

    /

    返回文章
    返回