高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空智联网架构、安全与优化关键技术

王云涛 苏洲 高源 巴建乐

王云涛, 苏洲, 高源, 巴建乐. 低空智联网架构、安全与优化关键技术[J]. 电子与信息学报. doi: 10.11999/JEIT250947
引用本文: 王云涛, 苏洲, 高源, 巴建乐. 低空智联网架构、安全与优化关键技术[J]. 电子与信息学报. doi: 10.11999/JEIT250947
WANG Yuntao, SU Zhou, GAO Yuan, BA Jianle. Key Technologies for Low-Altitude Internet Networks: Architecture, Security, and Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250947
Citation: WANG Yuntao, SU Zhou, GAO Yuan, BA Jianle. Key Technologies for Low-Altitude Internet Networks: Architecture, Security, and Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250947

低空智联网架构、安全与优化关键技术

doi: 10.11999/JEIT250947 cstr: 32379.14.JEIT250947
基金项目: 国家重点研发计划项目(2022YFB3104500)
详细信息
    作者简介:

    王云涛:男,助理教授,研究方向为无人机网络安全与攻防博弈

    苏洲:男,教授,研究方向为无人机网络安全与AI安全等

    高源:男,博士生,研究方向为无人机网络安全

    巴建乐:女,硕士生,研究方向为具身智能安全与攻防博弈

    通讯作者:

    苏洲 zhousu@xjtu.edu.cn

  • 中图分类号: TP393

Key Technologies for Low-Altitude Internet Networks: Architecture, Security, and Optimization

Funds: National Key R&D Program of China (2022YFB3104500)
  • 摘要: 低空智联网作为低空数字经济的关键基础设施,通过深度融合各类有人/无人航空器及其地面支撑网络,构建了低空空域人-机-物三元融合的智能互联体系。该文系统梳理了低空智联网的最新研究进展,从网络架构、资源优化、安全威胁与防护以及大模型赋能四个维度展开深入分析。首先,探讨了低空智联网的现有标准、组成架构、关键特性及组网模式;其次,研究了空域资源管理、频谱资源分配、计算资源调度和能量资源优化等关键问题;再次,从感知层、网络层、应用层和系统层剖析了核心安全威胁并综述了多层次防护策略;接着,探讨了大模型技术在低空智联网的应用前景,并分析了其在任务优化与安全防护中的潜力;最后,讨论了低空智联网的未来研究方向,为构建高效、安全、智能的低空智联网体系提供了理论参考和技术指导。
  • 图  1  低空智联网网络架构

    图  2  低空智联网典型通信方式

    图  3  低空智联网协同多维资源优化结构框图

    图  4  低空智联网典型安全威胁示意图

    图  5  大模型赋能低空智联网的典型应用场景

    表  1  低空飞行终端类别与功能

    分类 占比 常见细分类飞行器 典型机型 主要用途
    有人 绝对少数
    (千级)
    固定翼通航飞机 赛斯纳172、钻石DA40、运-12 航测测绘、飞行培训、短途客运
    直升机 罗宾逊 R44、贝尔206、直-20 应急救援、医疗转运、城市巡逻
    运动/娱乐类航空器 滑翔机、动力伞、热气球 航空运动、旅游观光、科普教育
    无人 绝对多数(百万级) 多旋翼无人机 大疆 M300、Matrice 300 RTK 植保、低空物流、电力巡检、航拍
    固定翼无人机 翼龙-2、TB-001 测绘、环境监测、边境巡逻
    无人直升机 AV500W、铂影T1400 应急通信、森林防火、物资投送
    电动垂直起降机(eVTOL)
    模型航空器
    Volocopter、亿航EH216遥控滑翔机、
    四旋翼模型
    城市空中出行、低空载人运输科研测试、
    青少年培训
    下载: 导出CSV

    表  2  低空智联网标准进展情况

    标准组织标准编号主要研究内容
    ISOISO/TR 23629-1:2020联合国际民航组织等机构调查并分析了UTM标准化主题及未来趋势
    ISO 23629-7:2021制定了UAS服务提供商和运行控制系统之间空间信息的通用数据模型
    ISO 23629-12:2022研究了UTM场景下供应商合规监控、安全、安保、隐私等方面的指标和功能要求
    ISO 23629-8:2023定义了UAS远程识别的通用框架,设定了电子方式直接远程识别无人机的最低性能
    ISO 23629-9:2023研究了UTM服务提供商和不同用户之间为支持UTM服务进行的信息交换要素
    ISO 23629-5:2023确立了UTM核心功能和功能结构定义,并详细描述了UTM框架中的系统层面
    IEEEIEEE 1939.1-2021定义了用于有效管理无人机运行交通的低空空域结构
    下载: 导出CSV

    表  3  低空智联网安全威胁及其机理、攻击对象和影响

    层级 威胁类型 攻击机理/要点 文献编号 目标对象 主要影响
    感知层 GPS欺骗 伪造同步信号,渐进接管/覆盖式接管等 [4146] UAV导航接收机 定位偏移、航迹劫持
    干扰(Jamming/ IEMI/频扫) 恒定/随机/反应式干扰;IEMI篡改PWM/总线 [44,4953] GNSS/通信链路、执行器 失锁、链路中断、姿态失稳/坠毁
    声学/IMU注入 共振/声学注入破坏MEMS输出 [50,51] IMU/飞控 姿态漂移、控制环不稳
    侧信道(EM/RF/Acoustic) 被动测量功耗/EM/RF特征
    做识别情报
    [40,5457] UAV/基站/
    边缘节点
    型号识别、载荷推断、轨迹外泄
    硬件木马 触发逻辑+负载,
    条件触发篡改/泄露
    [5861] 飞控/SoC/外设 永久后门、功能退化
    网络层 DoS/洪泛/L7放大 去认证, ICMP/UDP/TCP flood; HTTP/2 Rapid Reset, CONTINUATION; DNSSEC/KeyTrap, DNSBomb CVE-2023-44487, CVE-2024-30255, CVE-2023-50387, [40,6267] Wi-Fi/网关/DNS/应用网关/基站 拥塞、帧率下降、控制失效
    认证绕过 Blast-RADIUS: MD5选择前缀碰撞, Reject→Accept [68] 接入网/地面站 未授权接入、接管
    虫洞攻击 截获-高速隧穿-伪近路诱导路由 [69,70] 多跳UAV网 路由失真、时延异常
    中间人攻击 监听/篡改/指令注入;
    明文/弱加密
    [7173] UAV$\leftrightarrow $地面
    控制站链路
    接管、数据篡改
    黑洞攻击 伪最优路由吸流并丢弃 [74,75] 路由层 投递率下降、鲁棒性劣化
    重放攻击 复用合法消息破坏新鲜性 / 指令/遥测/同步 误动作、时序混乱
    应用层 恶意软件/漏洞利用 广播/协议缺陷、模糊测试触发崩溃/绕过 [48,76,77] 飞控应用/地面站 RCE、崩溃、数据泄露
    后门/供应链 更新链植入、持久化控制 [78,79] UAV 固件/模块 长期隐蔽控制
    系统层 系统入侵/提权 缓冲区溢出、代码注入、提权 [80] OS/服务 远程接管、破坏任务
    固件与更新链缺陷 PX4解析漏洞;签名绕过/
    未授权补丁
    CVE-2023-46256, CVE-2023-47625, CVE-2025-5640, [76] PX4/固件链 崩溃、任意代码执行、持久化
    下载: 导出CSV

    表  4  大模型赋能低空智联网优化研究现状

    大模型
    类型
    研究方法 主要贡献 优势 不足 文献
    编号
    LLM 自然语言指令,
    代码生成
    提出TPML系统,实现基于LLM的任务规划 规划效率高,适应性强 指令理解要求高 [89]
    结构化提示,
    迭代优化
    提出LLM驱动的多无人机部署优化方法 快速收敛,计算时间减少 适应性不足 [90]
    VLM 视图文本描述生成 提出基于VLM的无人机跨视图地理定位方法 语义理解能力强 训练推理复杂,
    资源消耗大
    [91]
    文本描述生成,
    特征融合
    提出UAV-VLA系统,实现基于文本请求的飞行路径
    和行动计划生成
    飞行计划效率高,
    准确性好
    卫星图像依赖度高 [92]
    MLLM 指令微调,提示微调 提出AirVista框架,提升UAV的3D空间感知和任务分解能力 自主性强,
    任务执行效率高
    3D空间知识有限,
    适应性待提升
    [93]
    LoRA微调,
    少样本学习
    提出云边协同的ADAS架构,优化服务延迟、
    能耗和QoS
    任务成功率高 系统复杂,依赖大
    规模数据
    [94]
    具身
    智能体
    细粒度空间描述,
    记忆检索
    提出城市级视觉语言导航的空中智能体,
    增强空间感知和自主导航能力
    能够处理模糊指令 通信带宽限制,
    策略学习复杂
    [95]
    语义映射,通信机制 提出分层决策的多智能体协同导航框架 复杂任务成功率高,
    适应性强
    依赖高质量数据,
    模型训练成本高
    [96]
    下载: 导出CSV

    表  5  大模型赋能低空智联网安全研究现状

    大模型
    类型
    研究方法 主要贡献 优势 不足 文献
    编号
    LLM 特征提取,态势感知 提出SAG-Attack和LLM-SA,增强零信任SAGIN安全 适应性强,可学习性高,协同性好 计算资源高,
    推理时间长
    [97]
    链式推理,策略生成 提出空天地一体化网络自进化安全框架,处理多维威胁信息并自适应更新 适应性强,策略准确 实时性不足,计算资源需求高 [98]
    VLM 数据分析,分类数据集成 提出集成分类数据提升VLM性能,有望结合空间信息用于异常检测 数据驱动性能提升 验证范围有限,数据类型依赖性强 [99]
    指令微调,提示微调 提出无人机自主飞行的AirVista框架,有望对潜在威胁目标定位 空间感知能力强 数据与计算需求大 [100]
    MLLM 指令微调,数据集构建 提出EarthGPT,对多种遥感任务和多传感器图像的统一处理,有望实现多模态安全感知 泛化能力强 资源消耗大 [101]
    数据集构建,多轮处理 提出VisCoT,实现输入的动态聚焦和可解释推理,有望实现风险识别 具有可解释性 依赖于数据集质量 [102]
    具身
    智能体
    特征融合,条件嵌入 提出FGPrompt方法,实现对目标相关区域的精准定位和注意力引导,有望实现风险预警 模型轻量化,
    识别精确率高
    泛化能力不足 [103]
    多模态分层强化学习 提出AVLEN框架,实现音频-视觉导航与自然语言指令的结合,可实现自我修正 成功率高,交互性强 模型依赖性强 [104]
    下载: 导出CSV
  • [1] 董超, 经宇骞, 屈毓锛, 等. 面向低空智联网频谱认知与决策的云边端融合体系架构[J]. 通信学报, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.

    DONG Chao, JING Yuqian, QU Yuben, et al. Cloud-edge-device fusion architecture oriented to spectrum cognition and decision in low altitude intelligence network[J]. Journal on Communications, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
    [2] 新华社. 中央经济工作会议在北京举行 习近平发表重要讲话[EB/OL]. https://www.gov.cn/yaowen/liebiao/202312/content_6919834.htm, 2023.
    [3] SHAKERI R, AL-GARADI M A, BADAWY A, et al. Design challenges of multi-UAV systems in cyber-physical applications: A comprehensive survey and future directions[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3340–3385. doi: 10.1109/COMST.2019.2924143.
    [4] 董超, 崔灿, 贾子晔, 等. 面向低空智联网的多维信息统一表征技术综述[J]. 电子与信息学报, 2025, 47(5): 1215–1229. doi: 10.11999/JEIT240835.

    DONG Chao, CUI Can, JIA Ziye, et al. Survey of unified representation technology of multi-dimensional information for low altitude intelligent network[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1215–1229. doi: 10.11999/JEIT240835.
    [5] CAI Lingyi, WANG Jiacheng, ZHANG Ruichen, et al. Secure physical layer communications for low-altitude economy networking: A survey[J]. arXiv preprint arXiv: 2504.09153, 2025. doi: 10.48550/arXiv.2504.09153.
    [6] WANG Zhaoxuan, LI Yang, WU Shihao, et al. A survey on cybersecurity attacks and defenses for unmanned aerial systems[J]. Journal of Systems Architecture, 2023, 138: 102870. doi: 10.1016/j.sysarc.2023.102870.
    [7] KHAWAJA W, EZUMA M, SEMKIN V, et al. A survey on detection, classification, and tracking of UAVs using radar and communications systems[J]. IEEE Communications Surveys & Tutorials, 2025: 1–44. doi: 10.1109/COMST.2025.3554613.
    [8] LI Xiao, DING Xue, XIE Weiliang, et al. Low-altitude sensing model: Analysis leveraging ISAC in real-world environments[J]. Drones, 2025, 9(4): 283. doi: 10.3390/drones9040283.
    [9] SABUJ S R, ALAM M S, HAIDER M, et al. Low altitude satellite constellation for futuristic aerial-ground communications[J]. Computer Modeling in Engineering & Sciences, 2023, 136(2): 1053–1089. doi: 10.32604/cmes.2023.024078.
    [10] BUTT M Z, NASIR N, and RASHID R B A. A review of perception sensors, techniques, and hardware architectures for autonomous low-altitude UAVs in non-cooperative local obstacle avoidance[J]. Robotics and Autonomous Systems, 2024, 173: 104629. doi: 10.1016/j.robot.2024.104629.
    [11] 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.

    FAN Bangkui, LI Yun, and ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.
    [12] 中国民航网. 2023年中国通用航空盘点[EB/OL]. http://www.caacnews.com.cn/1/tbtj_/202401/t20240124_1374164.html, 2024.
    [13] ISO. ISO/TR 23629-1: 2020 UAS Traffic Management (UTM) Part 1: Survey results on UTM[S]. Geneva: ISO, 2020.
    [14] ISO. ISO 23629-7: 2021 UAS traffic management (UTM) Part 7: Data model for spatial data[S]. Geneva: ISO, 2021.
    [15] ISO. ISO 23629-12: 2022 UAS Traffic Management (UTM) Part 12: Requirements for UTM service providers[S]. Geneva: ISO, 2022.
    [16] ISO. ISO 23629-8: 2023 UAS Traffic Management (UTM) Part 8: Remote identification[S]. Geneva: ISO, 2023.
    [17] ISO. ISO 23629-9: 2023 UAS Traffic Management (UTM) Part 9: Interface between UTM service providers and users[S]. Geneva: ISO, 2023.
    [18] ISO. ISO 23629-5: 2023 UAS Traffic Management (UTM) Part 5: UTM functional structure[S]. Geneva: ISO, 2023.
    [19] IEEE. IEEE Std 1939.1-2021 IEEE Standard for a framework for structuring low-altitude airspace for Unmanned Aerial Vehicle (UAV) operations[S]. New York: IEEE, 2021. doi: 10.1109/IEEESTD.2021.9631203.
    [20] 中国民航局. 低空联网无人机安全飞行测试报告[EB/OL]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201811/t20181127_193186.html, 2018.
    [21] 尹浩, 魏急波, 赵海涛, 等. 面向有人/无人协同的智能通信与组网关键技术: 现状与趋势[J]. 通信学报, 2024, 45(1): 1–17. doi: 10.11959/j.issn.1000-436x.2024037.

    YIN Hao, WEI Jibo, ZHAO Haitao, et al. Intelligent communication and networking key technologies for manned/unmanned cooperation: States-of-the-art and trends[J]. Journal on Communications, 2024, 45(1): 1–17. doi: 10.11959/j.issn.1000-436x.2024037.
    [22] PANG Bizhao, DAI Wei, RA T, et al. A concept of airspace configuration and operational rules for UAS in current airspace[C]. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, USA, 2020: 1–9. doi: 10.1109/DASC50938.2020.9256627.
    [23] XIANG Jinwu, LIU Yang, and LUO Zhangping. Flight safety measurements of UAVs in congested airspace[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1355–1366. doi: 10.1016/j.cja.2016.08.017.
    [24] REUS-MUNS G, DIDDI M, SINGHAL C, et al. Flying among stars: Jamming-resilient channel selection for UAVs through aerial constellations[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1246–1262. doi: 10.1109/TMC.2021.3102883.
    [25] WANG Bowen, SUN Yanjing, ZHAO Nan, et al. Learn to coloring: Fast response to perturbation in UAV-assisted disaster relief networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3505–3509. doi: 10.1109/TVT.2020.2967124.
    [26] CHEN Jiaxin, WU Qihui, XU Yuhua, et al. Spectrum allocation for task-driven UAV communication networks exploiting game theory[J]. IEEE Wireless Communications, 2021, 28(4): 174–181. doi: 10.1109/MWC.001.2000444.
    [27] WU Jiehong, ZHOU Jianzhou, YU Lei, et al. MAC optimization protocol for cooperative UAV based on dual perception of energy consumption and channel gain[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9851–9862. doi: 10.1109/TMC.2024.3372253.
    [28] SHANG Bodong, LIU Lingjia, RAO R M, et al. 3D spectrum sharing for hybrid D2D and UAV networks[J]. IEEE Transactions on Communications, 2020, 68(9): 5375–5389. doi: 10.1109/TCOMM.2020.2997957.
    [29] 王云涛, 苏洲, 许其超, 等. 基于审计博弈的安全协作频谱感知方案[J]. 通信学报, 2023, 44(12): 1–14. doi: 10.11959/j.issn.1000-436x.2023238.

    WANG Yuntao, SU Zhou, XU Qichao, et al. Secure and collaborative spectrum sensing scheme based on audit game[J]. Journal on Communications, 2023, 44(12): 1–14. doi: 10.11959/j.issn.1000-436x.2023238.
    [30] CHEN Ying, LI Kaixin, WU Yuan, et al. Energy efficient task offloading and resource allocation in air-ground integrated MEC systems: A distributed online approach[J]. IEEE Transactions on Mobile Computing, 2024, 23(8): 8129–8142. doi: 10.1109/TMC.2023.3346431.
    [31] WANG Yuntao, SU Zhou, LUAN T H, et al. SEAL: A strategy-proof and privacy-preserving UAV computation offloading framework[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5213–5228. doi: 10.1109/TIFS.2023.3280740.
    [32] APOSTOLOPOULOS P A, FRAGKOS G, TSIROPOULOU E E, et al. Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty[J]. IEEE Transactions on Mobile Computing, 2023, 22(1): 175–190. doi: 10.1109/TMC.2021.3069911.
    [33] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
    [34] LIN Xiaochen, MEI Weidong, and ZHANG Rui. A new store-then-amplify-and-forward protocol for UAV mobile relaying[J]. IEEE Wireless Communications Letters, 2020, 9(5): 591–595. doi: 10.1109/LWC.2019.2961668.
    [35] ZHOU Fasheng, WANG Ning, LUO Gaoyong, et al. Edge caching in multi-UAV-enabled radio access networks: 3D modeling and spectral efficiency optimization[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 329–341. doi: 10.1109/TSIPN.2020.2986360.
    [36] LI Lixin, CHENG Qianqian, XUE Kaiyuan, et al. Downlink transmit power control in ultra-dense UAV network based on mean field game and deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15594–15605. doi: 10.1109/TVT.2020.3043851.
    [37] LIU Yuan, XIONG Ke, NI Qiang, et al. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization[J]. IEEE Internet of Things Journal, 2020, 7(4): 2777–2790. doi: 10.1109/JIOT.2019.2958975.
    [38] WANG Yuntao, SU Zhou, ZHANG Ning, et al. Mobile wireless rechargeable UAV networks: Challenges and solutions[J]. IEEE Communications Magazine, 2022, 60(3): 33–39. doi: 10.1109/MCOM.001.2100731.
    [39] YE Hanting, KANG Xin, JOUNG J, et al. Optimization for wireless-powered IoT networks enabled by an energy-limited UAV under practical energy consumption model[J]. IEEE Wireless Communications Letters, 2021, 10(3): 567–571. doi: 10.1109/LWC.2020.3038079.
    [40] WEI Xiaomin, MA Jianfeng, and SUN Cong. A survey on security of unmanned aerial vehicle systems: Attacks and countermeasures[J]. IEEE Internet of Things Journal, 2024, 11(21): 34826–34847. doi: 10.1109/JIOT.2024.3429111.
    [41] WESTBROOK T. The global positioning system and military jamming: The geographies of electronic warfare[J]. Journal of Strategic Security, 2019, 12(2): 1–16. doi: 10.5038/1944-0472.12.2.1720.
    [42] TIPPENHAUER N O, PÖPPER C, RASMUSSEN K B, et al. On the requirements for successful GPS spoofing attacks[C]. The 18th ACM Conference on Computer and Communications Security, Chicago, USA, 2011: 75–86. doi: 10.1145/2046707.2046719.
    [43] KERNS A J, SHEPARD D P, BHATTI J A, et al. Unmanned aircraft capture and control via GPS spoofing[J]. Journal of Field Robotics, 2014, 31(4): 617–636. doi: 10.1002/rob.21513.
    [44] SATHAYE H, STROHMEIER M, LENDERS V, et al. An experimental study of GPS spoofing and takeover attacks on UAVs[C]. The 31st USENIX Security Symposium (USENIX Security 22), Boston, USA, 2022: 3503–3520.
    [45] ZENG K C, LIU Shinan, SHU Yuanchao, et al. All your GPS are belong to us: Towards stealthy manipulation of road navigation systems[C]. The 27th USENIX Security Symposium (USENIX Security 18), Baltimore, USA, 2018: 1527–1544.
    [46] 新华网. 乌克兰部署电子战系统“欺骗”俄无人机[EB/OL]. https://www.news.cn/mil/2024-02/07/c_1212333955.htm, 2024.
    [47] NIGHSWANDER T, LEDVINA B, DIAMOND J, et al. GPS software attacks[C]. 2012 ACM Conference on Computer and Communications Security, Raleigh, USA, 2012: 450–461. doi: 10.1145/2382196.2382245.
    [48] CEVIZ O, SEN S, and SADIOGLU P. A survey of security in UAVs and FANETs: Issues, threats, analysis of attacks, and solutions[J]. IEEE Communications Surveys & Tutorials, 2025, 27(5): 3227–3265. doi: 10.1109/COMST.2024.3515051.
    [49] PIRAYESH H and ZENG Huacheng. Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 767–809. doi: 10.1109/COMST.2022.3159185.
    [50] SON Y, SHIN H, KIM D, et al. Rocking drones with intentional sound noise on gyroscopic sensors[C]. The 24th USENIX Security Symposium (USENIX Security 15), Washington, USA, 2015: 881–896.
    [51] TRIPPEL T, WEISSE O, XU Wenyuan, et al. WALNUT: Waging doubt on the integrity of MEMS accelerometers with acoustic injection attacks[C]. 2017 IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, 2017: 3–18. doi: 10.1109/EuroSP.2017.42.
    [52] DAYANIKLI G Y, SINHA S, MUNIRAJ D, et al. Physical-layer attacks against pulse width modulation-controlled actuators[C]. The 31st USENIX Security Symposium (USENIX Security 22), Boston, USA, 2022: 953–970.
    [53] JANG J H, CHO M, KIM J, et al. Paralyzing drones via EMI signal injection on sensory communication channels[C]. The 30th Annual Network and Distributed System Security (NDSS) Symposium, San Diego, USA, 2023: 1–18.
    [54] SPREITZER R, MOONSAMY V, KORAK T, et al. Systematic classification of side-channel attacks: A case study for mobile devices[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 465–488. doi: 10.1109/COMST.2017.2779824.
    [55] JAHAN F, SUN Weiqing, NIYAZ Q, et al. Security modeling of autonomous systems: A survey[J]. ACM Computing Surveys, 2020, 52(5): 91. doi: 10.1145/3337791.
    [56] ZHANG Qibo, ZENG Fanzi, HU Jingyang, et al. E-Argus: Drones detection by side-channel signatures via electromagnetic radiation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 18978–18991. doi: 10.1109/TITS.2024.3432977.
    [57] NGUYEN P, KAKARAPARTHI V, BUI N, et al. DroneScale: Drone load estimation via remote passive RF sensing[C]. The 18th Conference on Embedded Networked Sensor Systems, Yokohama, Japan, 2020: 326–339. doi: 10.1145/3384419.3430778.
    [58] 黄钊, 王泉, 杨鹏飞. 硬件木马: 关键问题研究进展及新动向[J]. 计算机学报, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.

    HUANG Zhao, WANG Quan, and YANG Pengfei. Hardware trojan: Research progress and new trends on key problems[J]. Chinese Journal of Computers, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.
    [59] ASIF M, RAHMAN M A, AKKAYA K, et al. ConFIDe: A PWM-driven control-fused intrusion detection system for hardware security in unmanned aerial vehicles[C]. The 19th ACM Asia Conference on Computer and Communications Security, Singapore, Singapore, 2024: 886–901. doi: 10.1145/3634737.3657014.
    [60] WU T F, GANESAN K, HU Y A, et al. TPAD: Hardware trojan prevention and detection for trusted integrated circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(4): 521–534. doi: 10.1109/TCAD.2015.2474373.
    [61] REECE T and ROBINSON W H. Detection of hardware trojans in third-party intellectual property using untrusted modules[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(3): 357–366. doi: 10.1109/TCAD.2015.2459038.
    [62] HASSIJA V, CHAMOLA V, AGRAWAL A, et al. Fast, reliable, and secure drone communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2802–2832. doi: 10.1109/COMST.2021.3097916.
    [63] WANG Xiaojie, ZHAO Zhonghui, YI Ling, et al. A survey on security of UAV swarm networks: Attacks and countermeasures[J]. ACM Computing Surveys, 2025, 57(3): 74. doi: 10.1145/3703625.
    [64] TANG A C. A review on cybersecurity vulnerabilities for urban air mobility[C/OL]. AIAA Scitech 2021 Forum, 2021: 0773. doi: 10.2514/6.2021-0773.
    [65] VASCONCELOS G, CARRIJO G, MIANI R, et al. The impact of DoS attacks on the AR. Drone 2.0[C]. 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), Recife, Brazil, 2016: 127–132. doi: 10.1109/LARS-SBR.2016.28.
    [66] GRUZA O, HEFTRIG E, JACOBSEN O, et al. Attacking with something that does not exist: 'Proof of non-existence' can exhaust DNS resolver CPU[C]. The 18th USENIX WOOT Conference on Offensive Technologies (WOOT 24), Philadelphia, USA, 2024: 45–57.
    [67] LI Xiang, WU Dashuai, DUAN Haixin, et al. DNSBomb: A new practical-and-powerful pulsing DoS attack exploiting DNS queries-and-responses[C]. 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2024: 4478–4496. doi: 10.1109/SP54263.2024.00264.
    [68] GOLDBERG S, HALLER M, HENINGER N, et al. RADIUS/UDP considered harmful[C]. The 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, USA, 2024: 7429–7446.
    [69] HU Y C, PERRIG A, and JOHNSON D B. Packet leashes: A defense against wormhole attacks in wireless networks[C]. IEEE INFOCOM 2003. 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), San Francisco, USA, 2003: 1976–1986. doi: 10.1109/INFCOM.2003.1209219.
    [70] SCHWEITZER N, DVIR A, and STULMAN A. Network wormhole attacks without a traditional wormhole[J]. Ad Hoc Networks, 2023, 151: 103286. doi: 10.1016/j.adhoc.2023.103286.
    [71] CONTI M, DRAGONI N, and LESYK V. A survey of man in the middle attacks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2027–2051. doi: 10.1109/COMST.2016.2548426.
    [72] PAULI D. Hacker reveals $40 attack that steals police drones from 2km away[EB/OL]. https://www.theregister.com/2016/04/01/hacker_reveals_40_attack_to_steal_28000_drones_from_2km_away, 2016.
    [73] RODDAY N M, SCHMIDT R D O, and PRAS A. Exploring security vulnerabilities of unmanned aerial vehicles[C]. 2016 IEEE/IFIP Network Operations and Management Symposium (NOMS), Istanbul, Turkey, 2016: 993–994. doi: 10.1109/NOMS.2016.7502939.
    [74] TSENG F H, CHOU L D, and CHAO H C. A survey of black hole attacks in wireless mobile ad hoc networks[J]. Human-centric Computing and Information Sciences, 2011, 1(1): 4. doi: 10.1186/2192-1962-1-4.
    [75] SCHWEITZER N, STULMAN A, MARGALIT R D, et al. Contradiction based gray-hole attack minimization for ad-hoc networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(8): 2174–2183. doi: 10.1109/TMC.2016.2622707.
    [76] SCHILLER N, CHLOSTA M, SCHLOEGEL M, et al. Drone security and the mysterious case of DJI's DroneID[C]. The 30th Annual Network and Distributed System Security (NDSS) Symposium, San Diego, USA, 2023: 1–17.
    [77] 央视网. 美国无人机“捕食者”和“死神”的控制系统遭病毒入侵[EB/OL]. https://news.cntv.cn/world/20111009/101151.shtml, 2011.
    [78] LADISA P, PLATE H, MARTINEZ M, et al. SoK: Taxonomy of attacks on open-source software supply chains[C]. 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2023: 1509–1526. doi: 10.1109/SP46215.2023.10179304.
    [79] KHANDELWAL S. MalDrone: First ever backdoor malware for drones[EB/OL]. https://thehackernews.com/2015/01/MalDrone-backdoor-drone-malware.html?utm_source=chatgpt.com, 2015.
    [80] JACOBSEN R H and MARANDI A. Security threats analysis of the unmanned aerial vehicle system[C]. 2021 IEEE Military Communications Conference (MILCOM), San Diego, USA, 2021: 316–322. doi: 10.1109/MILCOM52596.2021.9652900.
    [81] HU Jueming, AMMAR M, HUSSAIN B Z, et al. Reinforcement-learning-driven integrated detection and mitigation of UAV GPS spoofing attacks[J]. IEEE Internet of Things Journal, 2025, 12(18): 36926–36941. doi: 10.1109/JIOT.2025.3579307.
    [82] JEONG J, KIM D, JANG J H, et al. Un-rocking drones: Foundations of acoustic injection attacks and recovery thereof[C]. 30th Annual Network and Distributed System Security (NDSS) Symposium, San Diego, USA, 2023: 1–18.
    [83] WANG Han, SAYADI H, SASAN A, et al. Hybrid-Shield: Accurate and efficient cross-layer countermeasure for run-time detection and mitigation of cache-based side-channel attacks[C]. IEEE/ACM International Conference on Computer Aided Design, San Diego, USA, 2020: 1–9.
    [84] ALLADI T, NAREN, BANSAL G, et al. SecAuthUAV: A novel authentication scheme for UAV-ground station and UAV-UAV communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15068–15077. doi: 10.1109/TVT.2020.3033060.
    [85] HOSSEINZADEH M, ALI S, AHMAD H J, et al. A Novel Q-learning-based secure routing scheme with a robust defensive system against wormhole attacks in flying ad hoc networks[J]. Vehicular Communications, 2024, 49: 100826. doi: 10.1016/j.vehcom.2024.100826.
    [86] WAN Zelin, CHO J H, ZHU Mu, et al. Optimizing effectiveness and defense of drone surveillance missions via honey drones[J]. ACM Transactions on Internet Technology, 2024, 24(4): 22. doi: 10.1145/3701233.
    [87] LEKSSAYS A, MOUHCINE H, TRAN K, et al. LLMxCPG: Context-aware vulnerability detection through code property graph-guided large language models[C]. The 34th USENIX Security Symposium (USENIX Security 25), Seattle, USA, 2025: 489–507.
    [88] KOKKONIS D, MARCOZZI M, DECOUX E, et al. ROSA: Finding backdoors with fuzzing[C]. 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE), Ottawa, Canada, 2025: 2816–2828. doi: 10.1109/ICSE55347.2025.00183.
    [89] CUI Jinqiang, LIU Guocai, WANG Hui, et al. TPML: Task planning for multi-UAV system with large language models[C]. 2024 IEEE 18th International Conference on Control & Automation (ICCA), Reykjavík, Iceland, 2024: 886–891. doi: 10.1109/ICCA62789.2024.10591846.
    [90] WANG Yuhui, FAROOQ J, GHAZZAI H, et al. Multi-UAV placement for integrated access and backhauling using LLM-driven optimization[C]. 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 2025: 1–6. doi: 10.1109/WCNC61545.2025.10978733.
    [91] 陈鹏, 陈旭, 罗文, 等. 基于视觉语言模型的多模态无人机跨视图地理定位[J]. 机器人, 2025, 47(3): 416–426. doi: 10.13973/j.cnki.robot.240283.

    CHEN Peng, CHEN Xu, LUO Wen, et al. Multimodal drone cross-view geo-localization based on vision-language model[J]. Robot, 2025, 47(3): 416–426. doi: 10.13973/j.cnki.robot.240283.
    [92] SAUTENKOV O, YAQOOT Y, LYKOV A, et al. UAV-VLA: Vision-language-action system for large scale aerial mission generation[C]. 2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Melbourne, Australia, 2025: 1588–1592. doi: 10.1109/HRI61500.2025.10974117.
    [93] LIN Fei, TIAN Yonglin, WANG Yunzhe, et al. AirVista: Empowering UAVs with 3D spatial reasoning abilities through a multimodal large language model agent[C]. 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, 2024: 476–481. doi: 10.1109/ITSC58415.2024.10919532.
    [94] HU Yaqi, YE Dongdong, KANG Jiawen, et al. A cloud–edge collaborative architecture for multimodal LLM-based advanced driver assistance systems in IoT networks[J]. IEEE Internet of Things Journal, 2025, 12(10): 13208–13221. doi: 10.1109/JIOT.2024.3509628.
    [95] ZHANG Weichen, LIU Yuxuan, WANG Xuzhe, et al. Demo abstract: Embodied aerial agent for city-level visual language navigation using large language model[C]. The 23rd ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Hong Kong, China, 2024: 265–266. doi: 10.1109/IPSN61024.2024.00033.
    [96] LIU Xinzhu, GUO Di, LIU Huaping, et al. Multi-agent embodied visual semantic navigation with scene prior knowledge[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3154–3161. doi: 10.1109/LRA.2022.3145964.
    [97] CAO Xinye, NAN Guoshun, GUO Hongcan, et al. Exploring LLM-based multi-agent situation awareness for zero-trust space-air-ground integrated network[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(6): 2230–2247. doi: 10.1109/JSAC.2025.3560042.
    [98] QIN Qi, CAO Xinye, NAN Guoshun, et al. An LLM-based self-evolving security framework for 6G space-air-ground integrated networks[J]. IEEE Communications Magazine, 2025, 63(10): 110–116. doi: 10.1109/MCOM.003.2400695.
    [99] ZHANG Yuhui, UNELL A, WANG Xiaohan, et al. Why are visually-grounded language models bad at image classification?[C]. The 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 1639.
    [100] ZHOU Yue, DING Ran, YANG Xue, et al. AirSpatialBot: A spatially aware aerial agent for fine-grained vehicle attribute recognition and retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5624812. doi: 10.1109/TGRS.2025.3570895.
    [101] ZHANG Wei, CAI Miaoxin, ZHANG Tong, et al. EarthGPT: A universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5917820. doi: 10.1109/TGRS.2024.3409624.
    [102] SHAO Hao, QIAN Shengju, XIAO Han, et al. Visual CoT: Advancing multi-modal language models with a comprehensive dataset and benchmark for chain-of-thought reasoning[C]. The 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 275.
    [103] SUN Xinyu, CHEN Peihao, FAN Jugang, et al. FGPrompt: Fine-grained goal prompting for image-goal navigation[C]. The 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 527.
    [104] PAUL S, ROY-CHOWDHURY A K, and CHERIAN A. AVLEN: Audio-visual-language embodied navigation in 3D environments[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 451.
    [105] LIU C Y, WANG Yaxuan, FLANIGAN J, et al. Large language model unlearning via embedding-corrupted prompts[C]. The 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 3754.
    [106] CHOQUETTE-CHOO C A, DVIJOTHAM K D, PILLUTLA K, et al. Correlated noise provably beats independent noise for differentially private learning[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024: 1–61.
    [107] XI Zhaohan, DU Tianyu, LI Changjiang, et al. Defending pre-trained language models as few-shot learners against backdoor attacks[C]. The 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 1420.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  14
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-22
  • 修回日期:  2025-11-05
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回