高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频域感知与空间信息约束的SAR图像舰船目标实例分割方法

张博雅 王勇

张博雅, 王勇. 频域感知与空间信息约束的SAR图像舰船目标实例分割方法[J]. 电子与信息学报. doi: 10.11999/JEIT250938
引用本文: 张博雅, 王勇. 频域感知与空间信息约束的SAR图像舰船目标实例分割方法[J]. 电子与信息学报. doi: 10.11999/JEIT250938
ZHANG Boya, WANG Yong. A Frequency-Aware and Spatially Constrained Network for Ship Instance Segmentation in SAR Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250938
Citation: ZHANG Boya, WANG Yong. A Frequency-Aware and Spatially Constrained Network for Ship Instance Segmentation in SAR Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250938

频域感知与空间信息约束的SAR图像舰船目标实例分割方法

doi: 10.11999/JEIT250938 cstr: 32379.14.JEIT250938
基金项目: 国家重点研发计划项目(2024YFB3909800),国家杰出青年科学基金(62325104)
详细信息
    作者简介:

    张博雅:男,博士生,研究方向为SAR图像处理与目标检测

    王勇:男,教授,研究方向为雷达成像技术

    通讯作者:

    王勇 wangyong6012@hit.edu.cn

  • 中图分类号: TN95; TP751

A Frequency-Aware and Spatially Constrained Network for Ship Instance Segmentation in SAR Images

Funds: The National Key Research and Development Program of China (2024YFB3909800), The National Science Fund for Distinguished Young Scholars of China (62325104)
  • 摘要: 针对合成孔径雷达(SAR)图像中舰船实例分割面临的目标尺度变化大、分布不均匀以及背景环境复杂等难题,该文设计了一种频域感知与空间信息约束网络,通过充分挖掘和融合深度网络中SAR图像不同尺度特征信息,增强目标特征表达能力,进而提高SAR图像舰船目标实例分割精度。首先,在主干网络中构建频域感知网络单元,将特征图在频域编码为特征向量,以获取目标频域特征信息,提高网络对舰船目标与背景特征的判别能力;其次,构建选择性特征聚合网络,通过将高层语义信息聚合到低层特征中,引导网络选择性关注图像重要特征,实现不同尺度特征图的有效聚合;最后,提出一种空间信息约束的掩模损失函数,通过预测掩模与目标间的质心位置和方向偏差,引导模型参数更新,进一步提高舰船目标实例分割精度。实测数据集上的实验结果表明,所提方法对复杂背景中的舰船目标具有较好的实例分割性能和泛化能力。
  • 图  1  频域感知与空间信息约束实例分割网络结构

    图  2  FAN-block结构图

    图  3  选择性特征聚合网络结构图

    图  4  BCE loss相同的预测掩模示意图

    图  5  预测掩模与目标质心位置和方向偏差示意图

    图  6  不同目标算法实例分割结果对比

    图  7  不同模型输出特征图可视化结果

    表  1  不同目标实例分割算法在SSDD数据集上的实验结果(%)

    模型PRF1AP0.5AP0.75AP0.5:0.95
    Mask R-CNN91.585.088.190.164.955.2
    PANet97.290.293.693.277.660.9
    Mask Scoring R-CNN95.691.793.693.879.762.7
    YOLOv890.985.788.292.554.752.5
    YOLOv1189.889.189.493.859.954.0
    本文方法96.394.795.596.681.864.2
    下载: 导出CSV

    表  2  不同模块消融实验(%)

    算法FAN-blockSFAN空间信息约束AP0.5AP0.75AP0.5:0.95
    消融算法1-95.681.663.7
    消融算法2-95.781.363.4
    消融算法3-96.181.163.7
    本文方法96.681.864.2
    下载: 导出CSV

    表  3  模型泛化实验结果(%)

    模型AP0.5AP0.75AP0.5:0.95
    基线模型48.912.718.0
    本文方法58.017.424.2
    下载: 导出CSV
  • [1] ZHOU Zheng, ZHAO Lingjun, JI Kefeng, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. doi: 10.1109/TGRS.2024.3421512.
    [2] 吴一凡, 黄丽佳, 严朝保, 等. 面向GEO SAR图像的海上区域运动目标检测方法[J]. 电子与信息学报, 2025, 47(6): 1723–1733. doi: 10.11999/JEIT240906.

    WU Yifan, HUANG Lijia, YAN Chaobao, et al. A moving target detection method for GEO SAR image in maritime areas[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1723–1733. doi: 10.11999/JEIT240906.
    [3] 周奕辰, 王勇, 丁文钧. 天基ISAR的高动态多普勒空间目标态势感知算法[J]. 电子与信息学报, 2025, 47(11): 4296–4306. doi: 10.11999/JEIT250667.

    ZHOU Yichen, WANG Yong, and DING Wenjun. Highly dynamic Doppler space target situation awareness algorithm for spaceborne ISAR[J]. Journal of Electronics & Information Technology, 2025, 47(11): 4296–4306. doi: 10.11999/JEIT250667.
    [4] DONG Tiancheng, WANG Taoyang, LI Xuefei, et al. A large ship detection method based on component model in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 4108–4123. doi: 10.1109/JSTARS.2024.3514898.
    [5] 王勇, 张博雅. 基于特征融合和定位增强的SAR图像舰船目标检测方法[J]. 系统工程与电子技术, 2025, 47(11): 3586–3597. doi: 10.12305/j.issn.1001-506X.2025.11.08.

    WANG Yong and ZHANG Boya. Ship target detection method in SAR images based on feature fusion and location enhancement[J]. Systems Engineering and Electronics, 2025, 47(11): 3586–3597. doi: 10.12305/j.issn.1001-506X.2025.11.08.
    [6] 孟祥伟. SAR图像中舰船目标恒虚警率检测技术的研究[J]. 电子与信息学报, 2024, 46(9): 3739–3748. doi: 10.11999/JEIT231436.

    MENG Xiangwei. Research on constant false alarm rate detection technique for ship in SAR image[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3739–3748. doi: 10.11999/JEIT231436.
    [7] IERVOLINO P and GUIDA R. A novel ship detector based on the generalized-likelihood ratio test for SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3616–3630. doi: 10.1109/JSTARS.2017.2692820.
    [8] TIAN Chaoyang, LIU Dacheng, XUE Fengli, et al. Faster and lighter: A novel ship detector for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4002005. doi: 10.1109/LGRS.2024.3351132.
    [9] LI Zhongzheng, DONG Hairong, ZHANG Liye, et al. MLANet: A robust ship segmentation network based on multilevel multiattention feature fusion for complex maritime background environments[J]. IEEE Sensors Journal, 2024, 24(24): 42404–42416. doi: 10.1109/JSEN.2024.3485967.
    [10] 王磊, 张斌, 吴奇鸿. RCSA-YOLO: 改进YOLOv8的SAR舰船实例分割[J]. 计算机工程与应用, 2024, 60(18): 103–113. doi: 10.3778/j.issn.1002-8331.2401-0445.

    WANG Lei, ZHANG Bin, and WU Qihong. RCSA-YOLO: Improved SAR ship instance segmentation of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(18): 103–113. doi: 10.3778/j.issn.1002-8331.2401-0445.
    [11] LI Wentao, WANG Xinyu, XU Haixia, et al. PLDF-S3: Pseudo-label-driven framework for offshore to inshore unsupervised SAR image ship segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4011505. doi: 10.1109/LGRS.2025.3595937.
    [12] WEI Shunjun, ZENG Xiangfeng, ZHANG Hao, et al. LFG-Net: Low-level feature guided network for precise ship instance segmentation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231017. doi: 10.1109/TGRS.2022.3188677.
    [13] LIU Li, ZHANG Shuo, and HU Mingtao. MFE-Net: A novel multiscale feature enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 1504305. doi: 10.1109/LGRS.2025.3569712.
    [14] 张天文, 张晓玲, 邵子康, 等. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831–838. doi: 10.12305/j.issn.1001-506X.2024.03.08.

    ZHANG Tianwen, ZHANG Xiaoling, SHAO Zikang, et al. Mask attention interaction for SAR ship instance segmentation[J]. Systems Engineering and Electronics, 2024, 46(3): 831–838. doi: 10.12305/j.issn.1001-506X.2024.03.08.
    [15] ZHANG Qiang and HAN Zhen. DRSNet: Rotated-ROI ship segmentation for SAR images based on dual-scale cross attention[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4012805. doi: 10.1109/LGRS.2024.3420251.
    [16] KE Xiao, ZHANG Xiaoling, and ZHANG Tianwen. GCBANet: A global context boundary-aware network for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14(9): 2165. doi: 10.3390/rs14092165.
    [17] CHEN Man, WANG Tianfeng, XU Chengcheng, et al. Gradient prior guidance and image adaptation enhancement for semi-supervised SAR ship instance segmentation[J]. IEEE Sensors Journal, 2024, 24(21): 36216–36229. doi: 10.1109/JSEN.2024.3467030.
    [18] JIANG Mingda, GU Lingjia, LI Xiaofeng, et al. Ship contour extraction from SAR images based on faster R-CNN and Chan–Vese model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203414. doi: 10.1109/TGRS.2023.3247800.
    [19] KONG Weiming, ZHANG Yun, HUA Qinglong, et al. EGS-YOLO: Edge-guided semantic decoupling and Gaussian aggregation for lightweight SAR ship instance segmentation[C]. The 2025 IEEE Radar Conference, Krakow, Poland, 2025: 373–378. doi: 10.1109/RadarConf2559087.2025.11204995.
    [20] HE Kaiming, GKIOXARI G, DOLLÁR R, et al. Mask R-CNN[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    [21] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [22] HUANG Zhaojin, HUANG Lichao, GONG Yongchao, et al. Mask scoring R-CNN[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6402–6411. doi: 10.1109/CVPR.2019.00657.
    [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [24] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
    [25] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 658–666. doi: 10.1109/CVPR.2019.00075.
    [26] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000. doi: 10.1609/aaai.v34i07.6999.
    [27] GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J/OL]. arXiv preprint arXiv: 2205.12740, 2022. doi: 10.48550/arXiv.2205.12740.
    [28] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [29] QIN Zequn, ZHANG Pengyi, WU Fei, et al. FcaNet: Frequency channel attention networks[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 763–772. doi: 10.1109/ICCV48922.2021.00082.
    [30] ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690.
    [31] WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-19
  • 修回日期:  2026-01-04
  • 录用日期:  2026-01-04
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回