高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaRS-Align:通道关系谱对齐的跨模态车辆再辨识方法

萨百慧 庄靖怡 郑锦杰 朱建清

萨百慧, 庄靖怡, 郑锦杰, 朱建清. CaRS-Align:通道关系谱对齐的跨模态车辆再辨识方法[J]. 电子与信息学报. doi: 10.11999/JEIT250917
引用本文: 萨百慧, 庄靖怡, 郑锦杰, 朱建清. CaRS-Align:通道关系谱对齐的跨模态车辆再辨识方法[J]. 电子与信息学报. doi: 10.11999/JEIT250917
SA Baihui, ZHUANG Jingyi, ZHENG Jinjie, ZHU Jianqing. CaRS-Align: Channel Relation Spectra Alignment for Cross-Modal Vehicle Re-identification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250917
Citation: SA Baihui, ZHUANG Jingyi, ZHENG Jinjie, ZHU Jianqing. CaRS-Align: Channel Relation Spectra Alignment for Cross-Modal Vehicle Re-identification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250917

CaRS-Align:通道关系谱对齐的跨模态车辆再辨识方法

doi: 10.11999/JEIT250917 cstr: 32379.14.JEIT250917
基金项目: 福建省科技兴警研究计划项目(2024Y0064),泉州市高层次人才创新创业项目(2023C013)
详细信息
    作者简介:

    萨百慧:女,硕士生,研究方向为跨模态目标再辨识

    庄靖怡:女,硕士生,研究方向为跨模态目标再辨识

    郑锦杰:男,硕士生,研究方向为遥感小目标检测

    朱建清:男,教授,研究方向为计算机视觉和模式识别

    通讯作者:

    朱建清 jqzhu@hqu.edu.cn

  • 中图分类号: TP391.4

CaRS-Align: Channel Relation Spectra Alignment for Cross-Modal Vehicle Re-identification

Funds: Fujian Province Science and Technology Empowering Police Research Initiative (2024Y0064), High-level Talent Innovation and Entrepreneurship Project of Quanzhou City (2023C013R)
  • 摘要: 可见光与红外光作为智能交通场景中常用的两种图像模态,在长时间、广范围的车辆再辨识中具有重要应用价值。但是,由于成像机制与光谱响应的差异,两种模态的视觉表现特性并不一致,干扰身份表征学习,制约跨模态车辆再辨识。为此,该文提出通道关系谱对齐(Channel Relation Spectra Alignment, CaRS-Align)方法,以通道关系谱而非通道特征作为对齐目标,从关系结构层面削弱成像风格差异的干扰。具体地,首先在模态内构建通道关系谱,通过稳定的相关建模获取语义协同的通道—通道关系谱;随后,在跨模态层面最大化两模态对应通道关系谱的相关性,实现通道关系谱一致性对齐。CaRS-Align 对齐的是关系结构而非强度幅值,对光照、对比度与成像条件变化更不敏感,有效提升跨模态再辨识性能。实验表明,在公开的MSVR310和RGBN300数据集上,所提出CaRS-Align方法优于现有先进方法,例如,在MSVR310数据集上,红外光-可见光检索模式下,CaRS-Align的Rank-1识别率达到64.35%,较之现有先进方法提升了2.58%。
  • 图  1  通道特征对齐与通道关系谱对齐示意图。

    图  2  CaRS-Align通道关系谱对齐方法的总体框架。

    图  3  在MSVR310上CaRS-Align损失函数使用不同$ \alpha $值的结果。

    图  4  MSVR310数据集上使用和未使用CaRS-Align损失函数匹配结果对比,其中绿色钩号()表示匹配正确即对应图像身份和查询图像身份相同,红色叉号(×)表示匹配错误即对应图像身份与查询图像身份不同。

    图  5  在MSVR310数据集上类内(蓝色)与类间(粉色)特征距离分布。

    图  6  检索错误案例展示,其中红色叉号(×)表示匹配错误即对应图像身份与查询图像身份不同,反之,绿色钩号()表示匹配正确。

    表  1  CaRS-Align法在RGBN300数据集上的性能比较(%)。I2V表示红外光-可见光检索模式,V2I表示可见光-红外光检索模式

    方法 I2V V2I 参考文献
    R1(%) mAP(%) R1(%) mAP(%)
    DEEN[38] 67.49 45.91 71.05 48.83 CVPR2023
    LCNL[28] 67.97 46.24 63.27 42.05 IJCV2024
    SCR[39] 35.37 21.74 31.52 20.10 IF2025
    MSCMNet[25] 64.59 39.18 62.28 38.18 PR2025
    PDM[26] 74.48 53.96 72.75 51.33 ICASSP2025
    CaRS-Align 75.09 55.45 76.60 56.12 本文方法
    下载: 导出CSV

    表  2  CaRS-Align法在MSVR310数据集上的性能比较(%)。I2V表示红外光-可见光检索模式,V2I表示可见光-红外光检索模式

    方法 V2I I2V 参考文献
    R1(%) mAP(%) R1(%) mAP(%)
    DEEN[38] 46.73 28.68 45.89 28.54 CVPR2023
    LCNL[28] 32.04 18.58 37.87 18.56 IJCV2024
    MCA[40] 52.20 32.16 51.08 32.00 SPL2024
    SCR[39] 44.07 27.20 45.46 27.62 IF2025
    MDH[27] 63.24 40.42 61.77 40.12 TCSVT2025
    CaRS-Align 64.54 41.25 64.35 40.99 本文方法
    下载: 导出CSV
  • [1] LIU Feng, HUANG Kaiwen, and LI Qin. Knowledge-driven multi-branch interaction network for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(10): 17000–17012. doi: 10.1109/TITS.2025.3573396.
    [2] SHEN Fei, XIE Yi, ZHU Jianqing, et al. GiT: Graph interactive transformer for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 1039–1051. doi: 10.1109/TIP.2023.3238642.
    [3] 王博文, 郑建, 孙彦景, 等. 应急场景无人机自组网部分重叠信道动态分配方法[J]. 电子与信息学报, 2024, 46(12): 4373–4382. doi: 10.11999/JEIT240377.

    WANG Bowen, ZHENG Jian, SUN Yanjing, et al. Partially overlapping channels dynamic allocation method for UAV Ad-hoc networks in emergency scenario[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4373–4382. doi: 10.11999/JEIT240377.
    [4] 钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
    [5] HE Wenying, WANG Feiyu, BAI Yude, et al. PEFN: A patches enhancement and hierarchical fusion network for robust vehicle re-identification[J]. IEEE Internet of Things Journal, 2025, 12(14): 26898–26910. doi: 10.1109/JIOT.2025.3561186.
    [6] LI Hongchao, CHEN Jingong, ZHENG Aihua, et al. Day-night cross-domain vehicle re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12626–12635. doi: 10.1109/cvpr52733.2024.01200.
    [7] GUO Jinbo, ZHANG Xiaojing, LIU Zhengyi, et al. Generative and attentive fusion for multi-spectral vehicle re-identification[C]. Proceedings of the 7th International Conference on Intelligent Computing and Signal Processing, Xi'an, China, 2022: 1565–1572. doi: 10.1109/icsp54964.2022.9778769.
    [8] LI Hongchao, LI Chenglong, ZHU Xianpeng, et al. Multi-spectral vehicle re-identification: A challenge[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11345–11353. doi: 10.1609/aaai.v34i07.6796.
    [9] ZHENG Aihua, ZHU Xianpeng, MA Zhiqi, et al. Cross-directional consistency network with adaptive layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark[J]. Information Fusion, 2023, 100: 101901. doi: 10.1016/j.inffus.2023.101901.
    [10] ZHANG Hongyang, KUANG Zhenyu, CHENG Lidong, et al. Aivr-net: Attribute-based invariant visual representation learning for vehicle re-identification[J]. Knowledge-Based Systems, 2024, 289: 111455. doi: 10.1016/j.knosys.2024.111455.
    [11] BAU D, ZHOU Bolei, KHOSLA A, et al. Network dissection: Quantifying interpretability of deep visual representations[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3319–3327. doi: 10.1109/cvpr.2017.354.
    [12] ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833. doi: 10.1007/978-3-319-10590-1_53.
    [13] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/cvpr.2018.00745.
    [14] LU Zefeng, LIN Ronghao, and HU Haifeng, Modality and camera factors bi-disentanglement for NIR-VIS object re-identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1989–2004. doi: 10.1109/tifs.2023.3262130.
    [15] YE Mang, RUAN Weijian, DU Bo, et al. Channel augmented joint learning for visible-infrared recognition[C]. Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13547–13556. doi: 10.1109/iccv48922.2021.01331.
    [16] 霍东东, 杜海顺. 基于通道重组和注意力机制的跨模态行人重识别[J]. 激光与光电子学进展, 2023, 60(14): 1410007. doi: 10.3788/LOP221850.

    HUO Dongdong and DU Haishun. Cross-modal person re-identification based on channel reorganization and attention mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(14): 14100007. doi: 10.3788/LOP221850.
    [17] QIN Wencheng, HUANG Baojin, HUANG Zhiyong, et al. Deep constraints space via channel alignment for visible-infrared person re-identification[J]. IEEE Signal Processing Letters, 2022, 29: 2672–2676. doi: 10.1109/LSP.2022.3233002.
    [18] LIU Jiachang, SONG Wanru, CHEN Changhong, et al. Cross-modality person re-identification via channel-based partition network[J]. Applied Intelligence, 2022, 52(3): 2423–2435. doi: 10.1007/s10489-021-02548-3.
    [19] 伍邦谷, 张苏林, 石红, 等. 基于多分支结构的不确定性局部通道注意力机制[J]. 电子学报, 2022, 50(2): 374–382. doi: 10.12263/DZXB.20201204.

    WU Banggu, ZHANG Sulin, SHI Hong, et al. Multi-branch structure based local channel attention with uncertainty[J]. Acta Electronica Sinica, 2022, 50(2): 374–382. doi: 10.12263/DZXB.20201204.
    [20] SI Yunzhong, XU Huiying, ZHU Xinzhong, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. doi: 10.1016/j.neucom.2025.129866.
    [21] HONG C, KIM H, BAIK S, et al. DAQ: Channel-wise distribution-aware quantization for deep image super-resolution networks[C]. Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2022: 913–922. doi: 10.1109/wacv51458.2022.00099.
    [22] WANG Yang, PENG Jinjia, WANG Huibing, et al. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification[J]. Science China Information Sciences, 2022, 65(6): 160103. doi: 10.1007/s11432-021-3383-y.
    [23] LIU Xinchen, LIU Wu, ZHENG Jinkai, et al. Beyond the parts: Learning multi-view cross-part correlation for vehicle re-identification[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 907–915. doi: 10.1145/3394171.3413578.
    [24] QIAN Jiuchao, PAN Minting, TONG Wei, et al. URRNet: A unified relational reasoning network for vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11156–11168. doi: 10.1109/TVT.2023.3262983.
    [25] HUA Xuecheng, CHENG Ke, LU Hu, et al. MSCMNet: Multi-scale semantic correlation mining for visible-infrared person re-identification[J]. Pattern Recognition, 2025, 159: 111090. doi: 10.1016/j.patcog.2024.111090.
    [26] LI Jiarui, ZHEN Qiu, YANG Yilin, et al. Prototype-driven multi-feature generation for visible-infrared person re-identification[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Hyderabad, India, 2025: 1–5. doi: 10.1109/ICASSP49660.2025.10889917.
    [27] HUANG Linhan, CHEN Yutao, LIU Liu, et al. Harmonizing metric discrepancy for cross-modal object re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(11): 11129–11143. doi: 10.1109/TCSVT.2025.3576091.
    [28] YANG Mouxing, HUANG Zhenyu, and PENG Xi. Robust object re-identification with coupled noisy labels[J]. International Journal of Computer Vision, 2024, 132(7): 2511–2529. doi: 10.1007/s11263-024-01997-w.
    [29] YU Hao, CHENG Xu, PENG Wei, et al. Modality unifying network for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 11151–11161. doi: 10.1109/iccv51070.2023.01027.
    [30] KIM M, KIM S, PARK J, et al. PartMix: Regularization strategy to learn part discovery for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18621–18632. doi: 10.1109/cvpr52729.2023.01786.
    [31] WEI Xianbin, SONG Kechen, YANG Wenkang, et al. A visible-infrared clothes-changing dataset for person re-identification in natural scene[J]. Neurocomputing, 2024, 569: 127110. doi: 10.1016/j.neucom.2023.127110.
    [32] LI Guanzhi, ZHANG Aining, ZHANG Qizhi, et al. Pearson correlation coefficient-based performance enhancement of broad learning system for stock price prediction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2413–2417. doi: 10.1109/TCSII.2022.3160266.
    [33] LIU Gaqiong, HUANG Shucheng, WANG Gang, et al. Emrnet: Enhanced micro-expression recognition network with attention and distance correlation[J]. Artificial Intelligence Review, 2025, 58(6): 176. doi: 10.1007/s10462-025-11159-0.
    [34] CHUNG F R K. Spectral Graph Theory[M]. Providence: American Mathematical Society, 1997: 12–16.
    [35] YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872–2893. doi: 10.1109/TPAMI.2021.3054775.
    [36] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
    [37] 周玉, 赵小锋, 汪一, 等. 关键细粒度信息指导的多尺度遮挡行人重识别[J]. 电子与信息学报, 2024, 46(6): 2578–2586. doi: 10.11999/JEIT230686.

    ZHOU Yu, ZHAO Xiaofeng, WANG Yi, et al. Multi-scale occluded person re-identification guided by key fine-grained information[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2578–2586. doi: 10.11999/JEIT230686.
    [38] ZHANG Yukang and WANG Hanzi. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2153–2162. doi: 10.1109/cvpr52729.2023.00214.
    [39] YU Mingxin, GE Yiyuan, CHEN Zhihao, et al. No escape: Towards suggestive clues guidance for cross-modality person re-identification[J]. Information Fusion, 2025, 122: 103185. doi: 10.1016/j.inffus.2025.103185.
    [40] ZHAO Qianqian, SU Jiajun, ZHU Jianqing, et al. Modality-consistent attention for visible-infrared vehicle re-identification[J]. IEEE Signal Processing Letters, 2024, 31: 1910–1914. doi: 10.1109/LSP.2024.3431920.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  18
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-04
  • 录用日期:  2026-01-04
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回