高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向全覆盖路径规划的类Rulkov混沌映射算法设计

刘思聪 何明 李春彪 韩伟 刘承卓 夏恒煜

刘思聪, 何明, 李春彪, 韩伟, 刘承卓, 夏恒煜. 面向全覆盖路径规划的类Rulkov混沌映射算法设计[J]. 电子与信息学报. doi: 10.11999/JEIT250887
引用本文: 刘思聪, 何明, 李春彪, 韩伟, 刘承卓, 夏恒煜. 面向全覆盖路径规划的类Rulkov混沌映射算法设计[J]. 电子与信息学报. doi: 10.11999/JEIT250887
LIU Sicong, HE Ming, LI Chunbiao, HAN Wei, LIU Chengzhuo, XIA Hengyu. Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250887
Citation: LIU Sicong, HE Ming, LI Chunbiao, HAN Wei, LIU Chengzhuo, XIA Hengyu. Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250887

面向全覆盖路径规划的类Rulkov混沌映射算法设计

doi: 10.11999/JEIT250887 cstr: 32379.14.JEIT250887
基金项目: 国家自然科学基金62273356,国家人才项目2022-JCJQ-ZQ-001,江苏省重点研发计划BE2021729,高层次人才创新工程KYZYJQJY2101,国家重点研发计划
详细信息
    作者简介:

    刘思聪:男,副教授,研究方向为离散混沌映射,集群控制

    何明:男,教授,研究方向为集群控制

    李春彪:男,教授,研究方向为混沌映射,非线性动力学系统

    韩伟:女,副教授,研究方向为集群控制

    刘承卓:男,硕士研究生,研究方向为集群控制

    夏恒煜:男,硕士研究生,研究方向为集群控制

    通讯作者:

    何明 heming@aeu.edu.cn

  • 中图分类号: TN911.7

Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping

Funds: National Natural Science Foundation of China, No. 62273356, National Talent Project of China, No.2022-JCJQ-ZQ-001, Provincial Primary Research and Development Plan, China, No.BE2021729, High-level Talent Innovation Project, China, No.KYZYJQJY2101, National Key Research and Development Program of China 2024YFF1401400
  • 摘要: 本研究提出了一种基于正弦约束的类Rulkov超混沌映射(SRHC)系统,并将其应用于全覆盖路径规划算法(SRHC-CCPP)中,以解决智能机器人在复杂任务场景中的全覆盖路径规划问题。通过引入超混沌序列,该算法显著提升了机器人运动路径的随机性和动态性,避免了传统算法因规律性过强而可能陷入局部循环的问题。同时,结合记忆效应,算法能够动态记录网格访问历史,优先覆盖未访问区域,从而有效减少重复访问,提升覆盖效率。在障碍物处理方面,设计了碰撞检测与法线向量反射机制,使机器人能够灵活应对复杂环境中的障碍物干扰,并通过轻微扰动避免局部振荡。实验结果表明,SRHC-CCPP算法在无障碍和有障碍物条件下均表现出较高的覆盖速度和均匀性,展现了良好的初始值敏感性和鲁棒性。此外,算法的计算复杂度较低,适合大规模应用场景。本研究为智能机器人在灾区救援、火灾扑灭及未知地域勘探等高风险任务中的应用提供了新的技术支持。
  • 图  1  系统流程示意图

    图  2  SRHC系统的相轨示意图

    图  3  SRHC系统振荡幅值变化示意图

    图  4  两轮麦克纳姆轮机器人示意图

    图  5  SRHC系统初始值敏感度分析曲线

    图  6  机器人移动轨迹示意图

    图  7  不同初始值所对应的机器人运动轨迹示意图

    图  8  无障碍条件下SRHC-CCPP算法的全覆盖路径规划快照

    图  9  稀疏障碍条件下SRHC-CCPP算法的全覆盖路径规划快照

    图  10  密集障碍条件下SRHC-CCPP算法的全覆盖路径规划快照

     函数:记忆效应驱动速度调整
     输入:网格访问计数(grid_counts)、已访问网格集(visited_grids)、当前网格(current_grid)、八邻域网格(neighbors)、当前位置(position)、当前速度(velocity)
     输出:新速度方向(new_velocity)、更新后的已访问网格集(visited_grids)、更新后的网格访问计数(grid_counts)
     1. 如果:当前网格(current_grid)未在已访问网格集(visited_grids)中:
     2. 将当前网格(current_grid)添加至已访问网格集(visited_grids)
     3. 将当前网格的访问计数(grid_counts[current_grid])加1
     4. 结束条件判断
     5. 如果:未访问邻域(unvisited_neighbors)不为空:
     6. 从非空未访问邻域(unvisited_neighbors)中随机选择目标网格(target_grid)
     7. 根据目标网格(target_grid)计算目标位置(target_position)
     8. 更新新速度方向(new_velocity)为:归一化(目标位置 - 当前位置)
     9. 否则(未访问邻域为空):
     10. 从八邻域网格(neighbors)中筛选访问计数最小的网格(min_visit_grid)
     11 更新新速度方向(new_velocity)为:归一化(目标位置 - 当前位置)
     12 结束条件判断
     13 返回新速度方向(new_velocity)、更新后的已访问网格集(visited_grids)、更新后的网格访问计数(grid_counts)
    下载: 导出CSV

    表  1  全覆盖搜索步长值

    序号步长值均值方差
    150135122.1117.17
    25025
    35300
    45005
    55012
    65206
    75100
    85120
    95315
    105125
    下载: 导出CSV

    表  2  覆盖率对比表

    步长值覆盖率 (%)
    RBMCA[10]M-RBMCA[10]P-RBMCA[10]SRHC-CCPP
    10004.164.187.1648.25
    25009.671019.687.25
    500019.9320.1338.6799.75
    750029.5430.0754.09100
    1000035.0135.4671.03100
    下载: 导出CSV

    表  3  全覆盖搜索步长值

    序号步长值均值方差
    152135269.3146.46
    25125
    35500
    45205
    55112
    65366
    75500
    85128
    95319
    105225
    下载: 导出CSV

    表  4  全覆盖搜索步长值

    序号步长值均值方差
    11311314214980.04
    215125
    315523
    415202
    514115
    614366
    712598
    813168
    914310
    1014620
    下载: 导出CSV
  • [1] AHURAKA F, MCNAMEE P, WANG Qixu, et al. Chaotic motion planning for mobile robots: Progress, challenges, and opportunities[J]. IEEE Access, 2023, 11: 134917–134939. doi: 10.1109/ACCESS.2023.3337371.
    [2] SHIVASHANKAR V, JAIN R, KUTER U, et al. Real-time planning for covering an initially-unknown spatial environment[C]. Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference, Palm Beach, USA, 2011: 63–68.
    [3] GRØTLI E I and JOHANSEN T A. Path planning for UAVs under communication constraints using SPLAT! And MILP[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1/4): 265–282. doi: 10.1007/s10846-011-9619-8.
    [4] YAN Mingzhong and ZHU Daqi. An algorithm of complete coverage path planning for autonomous underwater vehicles[J]. Key Engineering Materials, 2011, 467/469: 1377–1385. doi: 10.4028/www.scientific.net/KEM.467-469.1377.
    [5] HERT S, TIWARI S, and LUMELSKY V. A terrain-covering algorithm for an AUV[M]. YUH J, URA T, and BEKEY G A. Underwater Robots. New York, USA: Springer, 1996: 17–45. doi: 10.1007/978-1-4613-1419-6_2.
    [6] PANG Bao, SONG Yong, ZHANG Chengjin, et al. A swarm robotic exploration strategy based on an improved random walk method[J]. Journal of Robotics, 2019, 2019: 6914212. doi: 10.1155/2019/6914212.
    [7] PANG Bao, QI Jiahui, ZHANG Chengjin, et al. Analysis of random walk models in swarm robots for area exploration[C]. Proceedings of 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019: 2484–2489. doi: 10.1109/ROBIO49542.2019.8961844.
    [8] PETAVRATZIS E, MOYSIS L, VOLOS C, et al. A chaotic path planning generator enhanced by a memory technique[J]. Robotics and Autonomous Systems, 2021, 143: 103826. doi: 10.1016/j.robot.2021.103826.
    [9] MOYSIS L, PETAVRATZIS E, VOLOS C, et al. A chaotic path planning generator based on logistic map and modulo tactics[J]. Robotics and Autonomous Systems, 2020, 124: 103377. doi: 10.1016/j.robot.2019.103377.
    [10] KVITKO D, RYBIN V, BAYAZITOV O, et al. Chaotic path-planning algorithm based on Courbage–Nekorkin artificial neuron model[J]. Mathematics, 2024, 12(6): 892. doi: 10.3390/math12060892.
    [11] SRIDHARAN K and AHMADABADI Z N. A multi-system chaotic path planner for fast and unpredictable online coverage of terrains[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5268–5275. doi: 10.1109/LRA.2020.3007471.
    [12] NASR S, MEKKI H, and BOUALLEGUE K. A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller[J]. Chaos, Solitons & Fractals, 2019, 118: 366–375. doi: 10.1016/j.chaos.2018.12.002.
    [13] ROSALIE M, DANOY G, CHAUMETTE S, et al. Chaos-enhanced mobility models for multilevel swarms of UAVs[J]. Swarm and Evolutionary Computation, 2018, 41: 36–48. doi: 10.1016/j.swevo.2018.01.002.
    [14] GAO Mingsheng, LIU Yuxiang, and WEI Pengfei. Opposite and chaos searching genetic algorithm based for UAV path planning[C]. Proceedings of the 6th IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2020: 2364–2369. doi: 10.1109/ICCC51575.2020.9345125.
    [15] VESLIN DIAZ E, SLAMA J, DUTRA M, et al. Trajectory tracking for robot manipulators using differential flatness[J]. Ingeniería e Investigación, 2011, 31(2): 84–90. doi: 10.15446/ing.investig.v31n2.23468.
    [16] LEVINE J. Analysis and Control of Nonlinear Systems: A Flatness-Based Approach[M]. Berlin, Heidelberg, Germany: Springer, 2009. doi: 10.1007/978-3-642-00839-9. (查阅网上资料,请补充引用页码).
    [17] MARKUS E D, AGEE J T, JIMOH A A, et al. Flatness based control of a 2 DOF single link flexible joint manipulator[C]. Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - SIMULTECH, Rome, Italy, 2012: 437–442. doi: 10.5220/0004061104370442.
    [18] MARKUS E D, AGEE J T, and JIMOH A A. Flat control of industrial robotic manipulators[J]. Robotics and Autonomous Systems, 2017, 87: 226–236. doi: 10.1016/j.robot.2016.10.009.
    [19] AL-RAEEI M. Applying fractional quantum mechanics to systems with electrical screening effects[J]. Chaos, Solitons & Fractals, 2021, 150: 111209. doi: 10.1016/j.chaos.2021.111209.
    [20] SEADAWY A R, ALI S, and RIZVI S T R. On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation[J]. Chaos, Solitons & Fractals, 2022, 161: 112374. doi: 10.1016/j.chaos.2022.112374.
    [21] RYBIN V, BUTUSOV D, BABKIN I, et al. Some properties of a discrete Lorenz system obtained by variable midpoint method and its application to chaotic signal modulation[J]. International Journal of Bifurcation and Chaos, 2024, 34(1): 2450009. doi: 10.1142/S0218127424500093.
    [22] CIRJULINA D, BABAJANS R, CAPLIGINS F, et al. Experimental study on Colpitts chaotic oscillator-based communication system application for the internet of things[J]. Applied Sciences, 2024, 14(3): 1180. doi: 10.3390/app14031180.
    [23] CHO S W, PARK H J, LEE H, et al. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations[J]. Computers & Industrial Engineering, 2021, 161: 107612. doi: 10.1016/j.cie.2021.107612.
    [24] LUIS S Y, PERALTA F, CÓRDOBA A T, et al. An evolutionary multi-objective path planning of a fleet of ASVs for patrolling water resources[J]. Engineering Applications of Artificial Intelligence, 2022, 112: 104852. doi: 10.1016/j.engappai.2022.104852.
    [25] MOYSIS L, PETAVRATZIS E, VOLOS C, et al. A chaotic path planning generator based on logistic map and modulo tactics[J]. Robotics and Autonomous Systems, 2020, 124: 103377. doi: 10.1016/j.robot.2019.103377. (查阅网上资料,本条文献与第9条文献重复,请确认).
    [26] LIAN Jianfang, YU Wentao, XIAO Kui, et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical Problems in Engineering, 2020, 2020: 1849240. doi: 10.1155/2020/1849240.
    [27] SHAO Shikai, PENG Yu, HE Chenglong, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97: 415–430. doi: 10.1016/j.isatra.2019.08.018.
    [28] MOYSIS L, VOLOS C, PHAM V T, et al. Analysis of a hyperchaotic system with a hyperbolic sinusoidal nonlinearity and its application to area exploration using multiple autonomous robots[M]. VOLCHENKOV D and LUO A C J. New Perspectives on Nonlinear Dynamics and Complexity. Cham, Switzerland: Springer, 2023: 43–62. doi: 10.1007/978-3-030-97328-5_4.
    [29] LE A V, VO D T, DAT N T, et al. Complete coverage planning using deep reinforcement learning for polyiamonds-based reconfigurable robot[J]. Engineering Applications of Artificial Intelligence, 2024, 138: 109424. doi: 10.1016/j.engappai.2024.109424.
    [30] CHEN Bolei, ZHONG Ping, CUI Yongzheng, et al. EMExplorer: An episodic memory enhanced autonomous exploration strategy with Voronoi domain conversion and invalid action masking[J]. Complex & Intelligent Systems, 2023, 9(6): 7365–7379. doi: 10.1007/s40747-023-01144-x.
    [31] LI Jianyu, WANG Kezhi, CHEN Zonghai, et al. An improved RRT* path planning algorithm in dynamic environment[C]. Proceedings of the 21st Asian Simulation Conference on Methods and Applications for Modeling and Simulation of Complex Systems, Changsha, China, 2022: 301–313. doi: 10.1007/978-981-19-9195-0_25.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-09
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回