高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型化宽阻带折叠基片集成波导滤波器研究

柯榕杰 王洪斌 程钰间

柯榕杰, 王洪斌, 程钰间. 小型化宽阻带折叠基片集成波导滤波器研究[J]. 电子与信息学报. doi: 10.11999/JEIT250869
引用本文: 柯榕杰, 王洪斌, 程钰间. 小型化宽阻带折叠基片集成波导滤波器研究[J]. 电子与信息学报. doi: 10.11999/JEIT250869
KE Rongjie, WANG Hongbin, CHENG Yujian. Research on A Miniaturized Wide Stopband Folded Substrate Integrated Waveguide Filter[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250869
Citation: KE Rongjie, WANG Hongbin, CHENG Yujian. Research on A Miniaturized Wide Stopband Folded Substrate Integrated Waveguide Filter[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250869

小型化宽阻带折叠基片集成波导滤波器研究

doi: 10.11999/JEIT250869 cstr: 32379.14.JEIT250869
基金项目: 超宽带低成本一体化集成接收射频前端关键技术研究,四川省自然科学基金青年项目,项目编号:2025ZNSFSC1437
详细信息
    作者简介:

    柯榕杰:男,硕士生,研究方向为小型化宽阻带SIW滤波器

    王洪斌:男,博士,副研究员,主要研究方向为多频/宽带/可重构超表面、多频反射/传输阵、多频共口径相控阵、超宽带收发射频前端电路集成等

    程钰间:男,博士,教授,主要研究方向为毫米波/太赫兹平面集成天线阵、超宽带/多频共口径相控阵天线、微波/毫米波三维集成与微系统、微波/毫米波相控阵列与测试、多功能一体化电路与前端、天线复杂辐射特性精准调控等

    通讯作者:

    王洪斌 wanghongbin@uestc.edu.cn

  • 中图分类号: TN713

Research on A Miniaturized Wide Stopband Folded Substrate Integrated Waveguide Filter

  • 摘要: 为满足5G/6G通信系统对小型化、高集成以及宽阻带的需求,该文提出一种基于高温共烧陶瓷(HTCC)技术的八分之一模折叠基片集成波导(FSIW)四阶带通滤波器。该滤波器融合折叠SIW的小型化优势与 HTCC的三维集成特性,通过八分之一模FSIW腔体结构实现尺寸缩减,滤波器尺寸仅为0.29λg×0.29λg,其中λg为其中心工作频率(f0)下对应的波导波长。采用金属通孔抑制高次模耦合,加载弯折微带线引入传输零点,增加L型枝节优化高频响应,在上阻带形成3个可控的传输零点,实现20 dB@3.73f0的宽阻带特性。实测结果显示,该滤波器中心频率为6.4 GHz,虽存在一定频偏与插入损耗,但相较现有研究,在小型化、阻带宽度及传输零点数量上均具明显优势,有望应用于高密度集成通信系统中。
  • 图  1  四分之一模FSIW腔体的展开图

    图  2  三种FSIW腔体的中间层

    图  3  三种FSIW腔体基模的电场分布

    图  4  初始四阶带通滤波器结构

    图  5  初始四阶带通滤波器第2层的电磁场分布

    图  6  初始四阶带通滤波器第5层的电磁场分布

    图  7  初始四阶带通滤波器的耦合矩阵综合和仿真结果

    图  8  初始四阶带通滤波器第1层物理结构及其对耦合矩阵元素MS1的影响

    图  9  初始四阶带通滤波器第5层物理结构及其对耦合矩阵元素M13的影响

    图  10  滤波器的设计过程

    图  11  滤波器设计过程中反射系数和传输系数的变化

    图  12  所提四阶带通滤波器结构

    图  13  不同参数对所提滤波器传输零点位置的影响

    图  14  所提滤波器的实物测试

    图  15  所提滤波器的误差分析

    表  1  四阶带通滤波器尺寸表(mm)

    L1L2L3s1s2
    3.502.491.001.700.28
    s3s4s5s6s7
    0.291.100.133.140.40
    s8s9s10s11d1
    0.101.970.150.401.70
    d2d3d4d5m1
    0.330.440.441.380.48
    m2m3m4m5m6
    0.422.230.620.402.02
    下载: 导出CSV

    表  2  现有SIW滤波器工作性能对比

    文献中心频率
    (GHz)
    插入损耗
    (dB)
    零点个数阻带宽度尺寸
    [4]8.000.90123dB@1.96f00.72λg × 0.45λg
    [10]10.031.79220dB@3.06f01.09λg × 0.56λg
    [12]10.111.22220dB@2.90f01.38λg × 0.8λg
    [13]10.011.52123dB@1.67f01.31λg × 1.15λg
    [14]10.711.57220dB@1.57f00.84λg2
    [15]9.002.80127dB@4.02f00.71λg × 0.71λg
    [16]10.001.80220dB@2.09f00.71λg × 0.53λg
    [17]9.860.98120dB@1.47f01.36λg × 0.68λg
    [18]10.001.98230dB@2.00f01.54λg × 1.29λg
    [19]4.521.97320dB@2.82f00.095λg2
    本文6.801.54320dB@3.73f00.29λg × 0.29λg
    下载: 导出CSV
  • [1] ZHANG Yin, DENG Jingya, SUN Dongquan, et al. Slow wave substrate-integrated waveguide with miniaturized dimensions and broadened bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(8): 3675–3683. doi: 10.1109/TMTT.2021.3074170.
    [2] WANG Ningning, ZHANG Dewei, LIU Qing, et al. A compact half-mode substrate integrated waveguide bandpass filter based on highly confined slow waves with loading capacitive patches[J]. IET Microwaves, Antennas & Propagation, 2024, 18(10): 771–778. doi: 10.1049/mia2.12501.
    [3] ZHAO Zhiyuan, PENG Cheng, WANG Shuxing, et al. Enhanced dual- and triple-band bandpass filters using slot-line perturbed HMSIW resonators[J]. IEICE Electronics Express, 2024, 21(23): 20240544. doi: 10.1587/elex.21.20240544.
    [4] KIM P and JEONG Y. Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-eighth modes cavities[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 16–19. doi: 10.1109/LMWC.2019.2954603.
    [5] WANG Xiang, ZHU Xiaowei, JIANG Zhihao, et al. Analysis of eighth-mode substrate-integrated waveguide cavity and flexible filter design[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2701–2712. doi: 10.1109/TMTT.2019.2913646.
    [6] QIU Liangfeng, XIE Bing, WU Linsheng, et al. A flat-passband predistorted bandpass filter with folded substrate integrated waveguide[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(2): 324–328. doi: 10.1109/TCSII.2021.3092973.
    [7] LIU Qing, ZHANG Dewei, GONG Ke, et al. Single- and dual-band bandpass filters based on multiple-mode folded substrate-integrated waveguide cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(12): 5335–5345. doi: 10.1109/TMTT.2023.3276058.
    [8] CLAUS N, KAPUSUZ K Y, VERHAEVERT J, et al. Compact and hybrid dual-band bandpass filter using folded multimode resonators and second-mode suppression[J]. Electronics, 2024, 13(10): 1921. doi: 10.3390/electronics13101921.
    [9] SEKAR V, ARMENDARIZ M, and ENTESARI K. A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(4): 866–876. doi: 10.1109/TMTT.2011.2109006.
    [10] LIU Qing, WEI Jinjin, GONG Ke, et al. Wide-stopband substrate integrated waveguide filters based on single-mode cavities with multiple-cross slots[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(12): 4369–4373. doi: 10.1109/TCSII.2023.3285661.
    [11] GUPTA A and KHAN A A. Substrate integrated waveguide bandpass filter with wide upper stopband[J]. AEU-International Journal of Electronics and Communications, 2025, 191: 155663. doi: 10.1016/j.aeue.2025.155663.
    [12] ZHU Yilong and DONG Yuandan. A novel compact wide-stopband filter with hybrid structure by combining SIW and microstrip technologies[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(7): 841–844. doi: 10.1109/LMWC.2021.3078897.
    [13] LIU Qing, ZHANG Dewei, TANG Min, et al. A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 101–110. doi: 10.1109/TMTT.2020.3037497.
    [14] GU Lin and DONG Yuandan. Compact half-mode SIW filter with high selectivity and improved stopband performance[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(9): 1039–1042. doi: 10.1109/LMWC.2022.3167036.
    [15] CHU Peng, FENG Jianguo, GUO Lei, et al. Using mixed coupling to realize wide stopband multilayer substrate integrated waveguide filter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2744–2748. doi: 10.1109/TCSII.2023.3248095.
    [16] WANG Xiang, ZHONG Nengyuan, LI Huangyan, et al. Miniaturized circular substrate integrated waveguide bandpass filter with flexible mixed coupling and wide stopband rejection[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(8): 3655–3659. doi: 10.1109/TCSII.2024.3369046.
    [17] JIAO Mengru, ZHU Fang, CHU Peng, et al. Compact hybrid bandpass filters using substrate-integrated waveguide and stripline resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(1): 391–400. doi: 10.1109/TMTT.2023.3284253.
    [18] LI Daotong, LUO Wei, CHEN Xiaoquan, et al. SIW cavity mode analysis and control techniques for compact wide-stopband filters design[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(7): 3338–3342. doi: 10.1109/TCSII.2024.3364816.
    [19] LIU Baoguang, LIU Leilei, BAO Shujie, et al. Ultracompact single- and dual-band FSIW filters with wide stopband based on multiple embedded hybrid resonant modes[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(8): 5248–5259. doi: 10.1109/TMTT.2025.3542777.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-05

目录

    /

    返回文章
    返回