高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展卡尔曼动态编码的智慧航道系统船舶定位安全保护

唐风建 闫霞 孙泽仪 朱钊伟 杨文

唐风建, 闫霞, 孙泽仪, 朱钊伟, 杨文. 基于扩展卡尔曼动态编码的智慧航道系统船舶定位安全保护[J]. 电子与信息学报. doi: 10.11999/JEIT250846
引用本文: 唐风建, 闫霞, 孙泽仪, 朱钊伟, 杨文. 基于扩展卡尔曼动态编码的智慧航道系统船舶定位安全保护[J]. 电子与信息学报. doi: 10.11999/JEIT250846
TANG Fengjian, YAN Xia, SUN Zeyi, ZHU Zhaowei, YANG Wen. Security Protection for Vessel Positioning in Smart Waterway Systems Based on Extended Kalman Dynamic Encoding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250846
Citation: TANG Fengjian, YAN Xia, SUN Zeyi, ZHU Zhaowei, YANG Wen. Security Protection for Vessel Positioning in Smart Waterway Systems Based on Extended Kalman Dynamic Encoding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250846

基于扩展卡尔曼动态编码的智慧航道系统船舶定位安全保护

doi: 10.11999/JEIT250846 cstr: 32379.14.JEIT250846
基金项目: 国家重点研发计划(2023YFF1204805),国家自然科学基金重点项目(62336005)
详细信息
    作者简介:

    唐风建:男,高级工程师,研究方向为航道与港口工程

    闫霞:女,工程师,研究方向为数字孪生船舶

    孙泽仪:女,研究生,研究方向为信息融合与网络信息安全

    朱钊伟:男,工程师,研究方向为智能航运系统数据安全与隐私保护

    杨文:女,教授,研究方向为工业互联网信息安全与多源信息融合

    通讯作者:

    杨文 weny@ecust.edu.cn

  • 中图分类号: TP309.7

Security Protection for Vessel Positioning in Smart Waterway Systems Based on Extended Kalman Dynamic Encoding

Funds: National Key Research and Development Program of China (2023YFF1204805),Key Program of the National Natural Science Foundation of China (62336005)
  • 摘要: 随着智能航运系统的快速发展,船舶定位数据在无线传输过程中面临严重的隐私泄露风险。传统隐私保护方法如差分隐私和同态加密存在数据失真、计算开销大或依赖高成本通信链路等问题,难以在保证数据完整性的同时实现高效防护。本文针对船舶稳定系统的特点,提出一种基于时间扰动增强的动态编码方案。该方案结合扩展卡尔曼滤波(EKF),在编码过程中引入不稳定的时间扰动项,利用接收方对发送方发出的信息进行确认这一机制(ACK反馈)实现参考时间同步,并利用共享随机种子独立生成同步的扰动项。理论分析与仿真实验表明,该方案能够在合法接收方实现近乎零精度损失的状态估计的同时,使窃听者在单次丢包后解码误差随时间呈指数增长趋势,有效阻断单通道与多通道窃听攻击。方案采用共享随机种子同步机制,避免了复杂的密钥管理,显著降低了通信与计算开销,适用于资源受限的海上无线传感器网络环境,为船舶安全定位提供了有效保障。
  • 图  1  :系统框架示意图

    图  3  估计误差范数

    图  2  船舶位置、速度和航向角的估计误差

  • [1] LI Song, HAN Jinguang, TONG Deyu, et al. Redactable signature-based public auditing scheme with sensitive data sharing for cloud storage[J]. IEEE Systems Journal, 2022, 16(3): 3613–3624. doi: 10.1109/JSYST.2022.3159832.
    [2] SUGIURA G, ITO K, and KASHIMA K. Bayesian differential privacy for linear dynamical systems[J]. IEEE Control Systems Letters, 2022, 6: 896–901. doi: 10.1109/LCSYS.2021.3087096.
    [3] XUE Qiao, ZHU Youwen, and WANG Jian. Joint distribution estimation and Naïve Bayes classification under local differential privacy[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(4): 2053–2063. doi: 10.1109/TETC.2019.2959581.
    [4] DOMINGO-FERRER J. A provably secure additive and multiplicative privacy homomorphism[C]. Proceedings of the 5th International Conference on Information Security, Sao Paulo, Brazil, 2002: 471–483. doi: 10.1007/3-540-45811-5_37.
    [5] TERANISHI K, KOGISO K, and TANAKA T. Faithful and privacy-preserving implementation of average consensus[C]. Proceedings of 2025 American Control Conference (ACC), Denver, USA, 2025: 2937–2942. doi: 10.23919/ACC63710.2025.11107548.
    [6] SHU Haoyu, ZHOU Jiayu, YANG Wen, et al. Distortion-based state security codes for distributed sensor networks[J]. Automatica, 2023, 151: 110904. doi: 10.1016/j.automatica.2023.110904.
    [7] LIN Y H, CHANG S Y, and SUN H M. CDAMA: Concealed data aggregation scheme for multiple applications in wireless sensor networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(7): 1471–1483. doi: 10.1109/TKDE.2012.94.
    [8] YANG Wen, LI Dengke, ZHANG Heng, et al. An encoding mechanism for secrecy of remote state estimation[J]. Automatica, 2020, 120: 109116. doi: 10.1016/j.automatica.2020.109116.
    [9] TSIAMIS A, GATSIS K, and PAPPAS G J. State-secrecy codes for networked linear systems[J]. IEEE Transactions on Automatic Control, 2020, 65(5): 2001–2015. doi: 10.1109/TAC.2019.2927459.
    [10] TSIAMIS A, GATSIS K, and PAPPAS G J. State-secrecy codes for stable systems[C]. Proceedings of 2018 Annual American Control Conference (ACC), Milwaukee, USA, 2018: 171–177. doi: 10.23919/ACC.2018.8431642.
    [11] YANG Wen, LI Dengke, ZHANG Heng, et al. An encoding mechanism for secrecy of remote state estimation[J]. Automatica, 2020, 120: 109116. doi: 10.1016/j.automatica.2020.109116. (查阅网上资料,本条文献与第8条文献重复,请确认).
    [12] YANG Lixin, XU Yong, LV Weijun, et al. Optimal transmission scheduling over multihop networks: Structural results and reinforcement learning[J]. IEEE Transactions on Automatic Control, 2024, 69(3): 1826–1833. doi: 10.1109/TAC.2023.3327622.
    [13] HUANG Zenghong, CHEN Zijie, XU Yong, et al. Distributed receding horizon estimation for time invariant discrete time linear systems based on substate decomposition[J]. IEEE Transactions on Network Science and Engineering, 2025. doi: 10.1109/TNSE.2025.3590754. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [14] YU Yan, YANG Wen, DING Wenjie, et al. Reinforcement learning solution for cyber-physical systems security against replay attacks[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2583–2595. doi: 10.1109/TIFS.2023.3268532.
    [15] SHNAIN A H, SRUTHI P, SUBBURAM S, et al. Privacy-preserving data aggregation in IoT networks using homomorphic encryption[C]. Proceedings of 2024 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 2024: 1387–1391. doi: 10.1109/ICICAT62666.2024.10923462.
    [16] YU Longxin, YU Wenwu, and LV Yuezu. Multi-dimensional privacy-preserving average consensus in wireless sensor networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1104–1108. doi: 10.1109/TCSII.2021.3095952.
    [17] AGARWAL G K, KARMOOSE M, DIGGAVI S, et al. Distortion-based lightweight security for cyber-physical systems[J]. IEEE Transactions on Automatic Control, 2021, 66(4): 1588–1601. doi: 10.1109/TAC.2020.3006814.
    [18] 金敏捷, 赵瑜颢. 舰船通信网络隐私信息安全加密方法研究[J]. 舰船科学技术, 2024, 46(10): 166–169. doi: 10.3404/j.issn.1672-7649.2024.10.029.

    JIN Minjie and ZHAO Yuhao. Research on privacy information security encryption methods for ship communication networks[J]. Ship Science and Technology, 2024, 46(10): 166–169. doi: 10.3404/j.issn.1672-7649.2024.10.029.
    [19] 卞璐. 船舶通信网络主动防御下隐私信息保护研究[J]. 舰船科学技术, 2021, 43(3A): 151–153.

    BIAN Lu. Research on the protection of privacy information in ship communication network[J]. Ship Science and Technology, 2021, 43(3A): 151–153.
    [20] 孙宝全, 颜冰, 姜润翔, 等. 船舶静态电场跟踪的渐进更新扩展卡尔曼滤波器[J]. 国防科技大学学报, 2018, 40(6): 134–140. doi: 10.11887/j.cn.201806019.

    SUN Baoquan, YAN Bing, JIANG Runxiang, et al. A progressive update extended Kalman filter for ship tracking with static electric field[J]. Journal of National University of Defense Technology, 2018, 40(6): 134–140. doi: 10.11887/j.cn.201806019.
    [21] KENNEDY J M, FORD J J, QUEVEDO D E, et al. Innovation-based remote state estimation secrecy with no acknowledgments[J]. IEEE Transactions on Automatic Control, 2024, 69(11): 7433–7448. doi: 10.1109/TAC.2024.3385315.
    [22] CHEN Peipei, YANG Wen, LIU Yun, et al. Dynamic encoding scheme for state estimation over wireless sensor networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4098–4102. doi: 10.1109/TCSII.2023.3275175.
    [23] 蒋瀚, 刘怡然, 宋祥福, 等. 隐私保护机器学习的密码学方法[J]. 电子与信息学报, 2020, 42(5): 1068–1078. doi: 10.11999/JEIT190887.

    JIANG Han, LIU Yiran, SONG Xiangfu, et al. Cryptographic approaches for privacy-preserving machine learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1068–1078. doi: 10.11999/JEIT190887.
    [24] 耿普, 祝跃飞. 浮点数比较分支的混淆方法研究[J]. 电子与信息学报, 2020, 42(12): 2857–2864. doi: 10.11999/JEIT190743.

    GENG Pu and ZHU Yuefei. An branch obfuscation research on path branch which formed by floating-point comparison[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2857–2864. doi: 10.11999/JEIT190743.
    [25] LIN X, ZHU Y, LI M, et al. Stability of extended Kalman filtering for nonlinear systems: A survey[J]. Automatica, 2021, 134: 109948. (查阅网上资料, 未找到本条文献信息, 请确认).
    [26] SHI Xiasheng and LI Zhongmei. Fully distributed adaptive practical fixed-time optimal consensus for multi-agent systems[J]. IEEE Control Systems Letters, 2025, 9: 1958–1963. doi: 10.1109/LCSYS.2025.3589617.
    [27] PAN Zhuorui, REN Wei, and SUN Ximing. Distributed event-triggered observer-based control for linear networked multi-agent systems[C]. Proceedings of 2024 European Control Conference (ECC), Stockholm, Sweden, 2024: 1171–1176. doi: 10.23919/ECC64448.2024.10591233.
  • 加载中
图(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-17
  • 录用日期:  2025-11-17
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回