高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合客户端动态筛选的联邦半监督影像分割

刘振丙 李焕兰 王报源 路皓翔 潘细朋

刘振丙, 李焕兰, 王报源, 路皓翔, 潘细朋. 融合客户端动态筛选的联邦半监督影像分割[J]. 电子与信息学报. doi: 10.11999/JEIT250834
引用本文: 刘振丙, 李焕兰, 王报源, 路皓翔, 潘细朋. 融合客户端动态筛选的联邦半监督影像分割[J]. 电子与信息学报. doi: 10.11999/JEIT250834
LIU Zhenbing, LI Huanlan, WANG Baoyuan, LU Haoxiang, PAN Xipeng. Federated Semi-Supervised Image Segmentation with Dynamic Client Selection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250834
Citation: LIU Zhenbing, LI Huanlan, WANG Baoyuan, LU Haoxiang, PAN Xipeng. Federated Semi-Supervised Image Segmentation with Dynamic Client Selection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250834

融合客户端动态筛选的联邦半监督影像分割

doi: 10.11999/JEIT250834 cstr: 32379.14.JEIT250834
基金项目: 国家自然科学基金(82502451, 82272075, 62462017),广西自然科学基金(2025GXNSFBA069390), 广西重点研发项目(桂科AB2401008)
详细信息
    作者简介:

    刘振丙:男,博士,教授,博、硕士生导师,研究方向为深度学习及其应用

    李焕兰:女,硕士生,研究方向为医学图像分析处理

    王报源:男,硕士生,研究方向为医学图像分析处理

    路皓翔:男,博士,讲师,硕士生导师,研究方向为医学人工智能及图像复原

    潘细朋:男,博士,副教授,博、硕士生导师,研究方向为医学图像处理

    通讯作者:

    路皓翔 hxlu1005@163.com

  • 中图分类号: TN911.73; TP391

Federated Semi-Supervised Image Segmentation with Dynamic Client Selection

Funds: The National Natural Science Foundation of China (82502451, 82272075, 62462017), The Natural Science Foundation of Guangxi (2025GXNSFBA069390), The Key Research and Development Program of Guangxi (AB2401008)
  • 摘要: 多中心协同验证是临床研究的必然趋势,但患者隐私保护、跨机构数据分布异质性以及精确标注稀缺,使传统集中式医学图像分割方法难以直接应用。为此,本文提出一种融合动态客户端管理机制的联邦半监督医学图像分割框架,利用客户端性能驱动的加权聚合和教师–学生知识蒸馏,在保护隐私的前提下充分挖掘无标签客户端价值;并设计多尺度特征融合UNet (Multi-scale Feature Fusion UNet, MFF-UNet)作为分割骨干,以增强多中心异构影像的特征表征能力,实现对前列腺区域的精准分割。基于来自6家医疗机构的T2加权前列腺MRI数据的实验表明,本方法在有标签和无标签客户端上分别获得0.8405/0.7868的Dice系数和8.04/8.67的HD95,均优于多种现有联邦半监督医学图像分割方法。
  • 图  1  融合客户端动态筛选的联邦半监督医学图像分割框架

    图  2  不同数据源的客户端表现出的数据异质性

    图  3  不同联邦半监督模型分割效果图

    图  4  不同分割模型在客户端F图像上的注意力热力图

    图  5  客户选择阈值$ \delta $敏感性分析

    图  6  贡献度惩罚因子$ \lambda $敏感性分析

    1  引入客户端选择动态调整的联邦半监督学习算法

     输入:客户端数据集$ {D}_{i}(i\in [1,1,\cdots,K]) $,带标签客户端模型
     $ {w}_{l} $,无标签客户端模型$ {w}_{u} $,总通信轮次$ T(t\in [1,2,\cdots ,T]) $,预
     热通信轮次$ {T}_{\text{warmup}} < T $
     输出:全局模型参数$ {w}_{G} $
     1: 初始化全局模型$ {w}_{G} $;
     2: 分发到每个客户端$ {w}_{l},{w}_{u}\leftarrow {w}_{G} $;
     3: 将客户端模型传给教师模型$ {w}_{T}\leftarrow {w}_{u,l} $;
     4: for $ t\in [1,2,\cdots,T] $:
     5:  if $ t=={T}_{\text{warmup}} $:加入无标签客户端;
     6:  客户端本地模型更新:
     7:  for 参与的客户端同步训练:
     8:   $ p\leftarrow \text{sigmoid}({w}_{S}(x)) $
     9:   if标签存在或$ t < {T}_{\text{warmup}} $:
     10:    $ {L}_{\text{Con}}=\alpha \cdot {L}_{\text{BCE}}(p,y)+(1-\alpha )\cdot {L}_{\text{Dice}}(p,y) $
     11:   else $ \hat{y}\leftarrow \text{sigmoid}({w}_{T}(x+\varepsilon )) $;
          $ L=\alpha \cdot {L}_{\text{BCE}}(p,\hat{y})+(1-\alpha )\cdot {L}_{\text{Dice}}(p,\hat{y}) $
     12: 更新教师模型$ w_{T}^{t+1}\leftarrow \tau w_{G}^{t}+\left(1-\tau \right)w_{T}^{t} $
     13: 在每个客户端验证计算得到分数$ P{(t)}_{i} $
     14: 动态权重聚合
     15: for 每个客户端:
     16:    if $ P{(t)}_{i} < \delta $:$ {v}_{i}\leftarrow 0 $
          else $ {v}_{i}\leftarrow \max ({v}_{\min },\min ((P{(t)}_{i}-\delta )/(1-\delta ),{v}_{\max })) $
     17:    if 无标签客户端:$ {{{v}^{\prime}}}_{i}\leftarrow \lambda \cdot {v}_{i} $
     18:    归一化权重$ {\alpha }_{i}\leftarrow \frac{{{{v}^{\prime}}}_{i}}{\displaystyle\sum\limits_{j=1}^{{{K}^{\prime}}}{v}_{j}},{K}^{\prime}=\{j|{v}_{j} > 0\} $
     19:    $ w_{G}^{t+1}=\displaystyle\sum\limits_{i=1}^{K}\alpha _{i}^{t}\cdot w_{i}^{t} $
     20: end
    下载: 导出CSV

    表  1  不同联邦半监督模型在多客户端上的Dice系数比较

    方法LabelUnlabelAvgHD95
    客户端ABCDEFAllLabelUnlabel
    FedAvg-semi[33]0.80090.83440.82490.59980.71780.69360.74520.82010.6704
    Feddus[19]0.80820.84970.81790.63500.74300.74280.76610.82530.7069
    HSSF[35]0.79160.81480.76740.75950.74550.76430.77390.79130.7564
    Cycle-Fed[36]0.77340.86400.79060.72120.81280.75950.78690.80930.7645
    FedGGp[37]0.78650.84850.82560.76330.79020.79680.80180.82020.7834
    RSCFed[34]0.79990.81260.81590.69600.82910.80760.79350.80950.7776
    FSSL-DPL[20]0.80550.84620.83030.70070.79870.82020.80030.82730.7732
    Ours0.83770.87000.81380.77880.82800.75370.81370.84050.7868
    下载: 导出CSV

    表  2  不同联邦半监督模型的HD95距离比较(pixel)

    方法LabelUnlabelAvgHD95
    客户端ABCDEFAllLabelUnlabel
    FedAvg-semi[33]11.4914.257.9321.0511.8523.2314.9711.2218.71
    Feddus[19]10.709.939.3914.0211.1115.2811.7410.0013.47
    HSSF[35]12.0817.1714.0817.0011.9613.0814.2314.4414.01
    Cycle-Fed[36]13.0611.009.8919.857.5016.0612.8911.3114.47
    FedGGp[37]10.6410.987.2917.0916.1713.2212.579.6415.49
    RSCFed[34]13.2311.107.5411.216.928.549.7610.628.89
    FSSL-DPL[20]10.236.877.2910.967.387.498.378.138.61
    Ours9.307.277.558.237.1910.588.358.048.67
    下载: 导出CSV

    表  3  不同模块配置下的前列腺MRI分割性能对比(Dice)

    w/o
    动态聚合
    w/o
    MFF-Unet
    Label Unlabel
    A B C D E F
    0.8082 0.8497 0.8179 0.6350 0.7430 0.7428
    0.8226 0.8242 0.7787 0.6900 0.7855 0.6147
    0.8193 0.8516 0.8218 0.6406 0.7612 0.7365
    0.8377 0.8700 0.8138 0.7788 0.8280 0.7537
    下载: 导出CSV
  • [1] CORNFORD P, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer—2024 update. Part I: Screening, diagnosis, and local treatment with curative intent[J]. European Urology, 2024, 86(2): 148–163. doi: 10.1016/j.eururo.2024.03.027.
    [2] 孙军梅, 葛青青, 李秀梅, 等. 一种具有边缘增强特点的医学图像分割网络[J]. 电子与信息学报, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784.

    SUN Junmei, GE Qingqing, LI Xiumei, et al. A medical image segmentation network with boundary enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784.
    [3] AZAD R, AGHDAM E K, RAULAND A, et al. Medical image segmentation review: The success of U-Net[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10076–10095. doi: 10.1109/TPAMI.2024.3435571.
    [4] JIANG Yangfan, LUO Xinjian, WU Yuncheng, et al. On data distribution leakage in cross-silo federated learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3312–3328. doi: 10.1109/TKDE.2023.3349323.
    [5] 肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.

    XIAO Xiong, TANG Zhuo, XIAO Bin, et al. A survey on privacy and security issues in federated learning[J]. Chinese Journal of Computers, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.
    [6] YANG Xiangli, SONG Zixing, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 8934–8954. doi: 10.1109/TKDE.2022.3220219.
    [7] MA Yuxi, WANG Jiacheng, YANG Jing, et al. Model-heterogeneous semi-supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1804–1815. doi: 10.1109/TMI.2023.3348982.
    [8] YANG Dong, XU Ziyue, LI Wenqi, et al. Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan[J]. Medical Image Analysis, 2021, 70: 101992. doi: 10.1016/j.media.2021.101992.
    [9] WU Huisi, ZHANG Baiming, CHEN Cheng, et al. Federated semi-supervised medical image segmentation via prototype-based pseudo-labeling and contrastive learning[J]. IEEE Transactions on Medical Imaging, 2023, 43(2): 649–661. doi: 10.1109/TMI.2023.3314430.
    [10] LUO Xiangde, WANG Guotai, LIAO Wenjun, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. doi: 10.1016/j.media.2022.102517.
    [11] SU Jiawei, LUO Zhiming, LIAN Sheng, et al. Mutual learning with reliable pseudo label for semi-supervised medical image segmentation[J]. Medical Image Analysis, 2024, 94: 103111. doi: 10.1016/j.media.2024.103111.
    [12] ABUDUWEILI A, LI Xingjian, SHI H, et al. Adaptive consistency regularization for semi-supervised transfer learning[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6919–6928. doi: 10.1109/CVPR46437.2021.00685.
    [13] SHELLER M J, EDWARDS B, REINA G A, et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data[J]. Scientific Reports, 2020, 10(1): 12598. doi: 10.1038/s41598-020-69250-1.
    [14] LIU Quande, DOU Qi, YU Lequan, et al. MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data[J]. IEEE Transactions on Medical Imaging, 2020, 39(9): 2713–2724. doi: 10.1109/TMI.2020.2974574.
    [15] XU An, LI Wenqi, GUO Pengfei, et al. Closing the generalization gap of cross-silo federated medical image segmentation[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 20834–20843. doi: 10.1109/CVPR52688.2022.02020.
    [16] JIANG Meirui, YANG Hongzheng, CHENG Chen, et al. IOP-FL: Inside-outside personalization for federated medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(7): 2106–2117. doi: 10.1109/TMI.2023.3263072.
    [17] LIU Quande, YANG Hongzheng, DOU Qi, et al. Federated semi-supervised medical image classification via inter-client relation matching[C]. Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 325–335. doi: 10.1007/978-3-030-87199-4_31.
    [18] WICAKSANA J, YAN Zengqiang, ZHANG Dong, et al. FedMix: Mixed supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(7): 1955–1968. doi: 10.1109/TMI.2022.3233405.
    [19] WANG Dan, HAN Chu, ZHANG Zhen, et al. FedDUS: Lung tumor segmentation on CT images through federated semi-supervised with dynamic update strategy[J]. Computer Methods and Programs in Biomedicine, 2024, 249: 108141. doi: 10.1016/j.cmpb.2024.108141.
    [20] QIU Liang, CHENG Jierong, GAO Huxin, et al. Federated semi-supervised learning for medical image segmentation via pseudo-label denoising[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4672–4683. doi: 10.1109/JBHI.2023.3274498.
    [21] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [22] ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]. Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 2018: 3–11. doi: 10.1007/978-3-030-00889-5_1.
    [23] HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1055–1059. doi: 10.1109/ICASSP40776.2020.9053405.
    [24] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [25] CHEN Shaolong, QIU Changzhen, YANG Weiping, et al. Combining edge guidance and feature pyramid for medical image segmentation[J]. Biomedical Signal Processing and Control, 2022, 78: 103960. doi: 10.1016/j.bspc.2022.103960.
    [26] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999.pdf, 2018.
    [27] FENG Shuanglang, ZHAO Heming, SHI Fei, et al. CPFNet: Context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008–3018. doi: 10.1109/TMI.2020.2983721.
    [28] GU Zaiwang, CHENG Jun, FU Huazhu, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281–2292. doi: 10.1109/TMI.2019.2903562.
    [29] DENG Yongheng, LYU Feng, REN Ju, et al. FAIR: Quality-aware federated learning with precise user incentive and model aggregation[C]. Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488743.
    [30] LITJENS G, TOTH R, VAN DE VEN W, et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge[J]. Medical Image Analysis, 2014, 18(2): 359–373. doi: 10.1016/j.media.2013.12.002.
    [31] LEMAÎTRE G, MARTÍ R, FREIXENET J, et al. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review[J]. Computers in Biology and Medicine, 2015, 60: 8–31. doi: 10.1016/j.compbiomed.2015.02.009.
    [32] BLOCH N, MADABHUSHI A, HUISMAN H, et al. NCI-ISBI 2013 challenge: Automated segmentation of prostate structures. The cancer imaging archive[EB/OL]. http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv, 2015.
    [33] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [34] LIANG Xiaoxiao, LIN Yiqun, FU Huazhu, et al. RSCFed: Random sampling consensus federated semi-supervised learning[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10144–10153. doi: 10.1109/CVPR52688.2022.00991.
    [35] MA Yuxi, WANG Jiacheng, YANG Jing, et al. Model-heterogeneous semi-supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1804–1815. doi: 10.1109/TMI.2023.3348982. (查阅网上资料,本条文献与第7条文献重复,请确认).
    [36] XIAO Yunpeng, ZHANG Qunqing, TANG Fei, et al. Cycle-fed: A double-confidence unlabeled data augmentation method based on semi-supervised federated learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11014–11028. doi: 10.1109/TMC.2024.3388731.
    [37] XI Yuan, LI Qiong, and MAO Haokun. Federated semi-supervised learning via globally guided pseudo-labeling: A robust approach for label-scarce scenarios[J]. Expert Systems with Applications, 2025, 294: 128667. doi: 10.1016/j.eswa.2025.128667.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  26
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回