高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用智能手机采集心音分析的HCM合并HFpEF的辅助筛查

董先鹏 孟祥彬 张阔 房冠辰 盖威蒿 王文尧 汪京嘉 高峻 潘俊君 唐振超 宋震

董先鹏, 孟祥彬, 张阔, 房冠辰, 盖威蒿, 王文尧, 汪京嘉, 高峻, 潘俊君, 唐振超, 宋震. 利用智能手机采集心音分析的HCM合并HFpEF的辅助筛查[J]. 电子与信息学报. doi: 10.11999/JEIT250830
引用本文: 董先鹏, 孟祥彬, 张阔, 房冠辰, 盖威蒿, 王文尧, 汪京嘉, 高峻, 潘俊君, 唐振超, 宋震. 利用智能手机采集心音分析的HCM合并HFpEF的辅助筛查[J]. 电子与信息学报. doi: 10.11999/JEIT250830
DONG Xianpeng, MENG Xiangbin, ZHANG Kuo, FANG Guanchen, GAI Weihao, WANG Wenyao, WANG Jingjia, GAO Jun, PAN Junjun, TANG Zhenchao, SONG Zhen. Auxiliary Screening for HCM with HFpEF Utilizing Smartphone-Acquired Heart Sound Analysis[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250830
Citation: DONG Xianpeng, MENG Xiangbin, ZHANG Kuo, FANG Guanchen, GAI Weihao, WANG Wenyao, WANG Jingjia, GAO Jun, PAN Junjun, TANG Zhenchao, SONG Zhen. Auxiliary Screening for HCM with HFpEF Utilizing Smartphone-Acquired Heart Sound Analysis[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250830

利用智能手机采集心音分析的HCM合并HFpEF的辅助筛查

doi: 10.11999/JEIT250830 cstr: 32379.14.JEIT250830
基金项目: 国家自然科学基金(32571731, 82172067, 82272068),北京市自然科学基金(L256013),中国科协青年人才托举工程(2023QNRC001)
详细信息
    作者简介:

    董先鹏:男,硕士生,研究方向为医学人工智能等

    孟祥彬:男,研究员,研究方向为医疗多模态大型语言模型等

    张阔:男,主治医师,研究方向为心血管代谢疾病及治疗等

    房冠辰:男,硕士生,研究方向为生物医学影像处理等

    盖威蒿:男,博士生,研究方向为智能生物医学影像等

    王文尧:男,副研究员,研究方向为心血管代谢疾病及治疗等

    汪京嘉:男,主治医师,研究方向为心血管代谢失稳及防治等

    高峻:男,住院医师,研究方向为心力衰竭、心肌病诊疗等

    潘俊君:男,教授,研究方向为虚拟手术、医学可视化等

    唐振超:男,副教授,研究方向为心血管影像智能分析等

    宋震:男,副研究员,研究方向为高性能计算与模型优化等

    通讯作者:

    宋震 songzh01@pcl.ac.cn

  • 中图分类号: R318; TP18

Auxiliary Screening for HCM with HFpEF Utilizing Smartphone-Acquired Heart Sound Analysis

Funds: The National Natural Science Foundation of China(32571731, 82172067, 82272068), Beijing Municipal Natural Science Foundation(L256013), Young Elite Scientists Sponsorship Program by CAST (2023QNRC001)
  • 摘要: 射血分数保留的心力衰竭(HFpEF)是一种高度异质性的临床综合征,在肥厚型心肌病患者(HCM)中较为常见。由于其诊断流程复杂,开展初步筛查与早期识别具有重要意义。对此,该文基于患者智能手机所采集的心音信号,提取了梅尔频率倒谱系数和短时傅里叶变换时频谱特征,并基于此分别构建了支持向量机与卷积神经网络两个基分类器。随后将两者预测概率作为新特征,构建并训练了以逻辑回归为元分类器的集成学习模型,用于HCM合并HFpEF的识别。结果显示,集成模型在测试集的AUC达到了0.900,准确率、灵敏度和特异度分别达到了0.813、0.768和0.854,有效提升了预测性能。结果表明,该文设计的分类模型可以基于智能手机采集的心音实现HCM合并HFpEF的高效识别,有望用于HCM患者对自身病情的动态监测和HFpEF初步筛查,从而缩短诊断延迟。
  • 图  1  HCM合并HFpEF辅助筛查流程图

    图  2  智能手机心音采集位置示意图

    图  3  心音信号的时域波形及其对应时频谱

    图  4  CNN分类器的模型结构图

    图  5  不同模型在测试集的混淆矩阵及ROC曲线

    表  1  被纳入HCM患者群体的基本信息和临床特征

    患者类别数量年龄(岁)心率(bpm)LVEF(%)E/e’
    不患HFpEF2740 ± 1773.5 ± 16.666.5 ± 7.27.4 ± 2.3
    患有HFpEF2952 ± 1567.8 ± 9.773.8 ± 7.212.9 ± 5.0
    下载: 导出CSV

    表  2  SVM分类器数据集划分详情

    类别 训练集 测试集
    患者数 音频数 患者数 音频数
    患有HFpEF 24 337 5 82
    不患HFpEF 22 333 5 89
    合计 46 670 10 171
    下载: 导出CSV

    表  3  卷积块的具体结构细节

    网络层序号结构组成核大小核数量步长参数量输出大小
    卷积块111维卷积564120544×1
    2批标准化128×1
    3ReLU×1
    卷积块241维卷积564120544×1
    5批标准化128×1
    6ReLU×1
    卷积块371维卷积564120544×1
    8批标准化128×1
    9ReLU×1
    卷积块4101维卷积564220544×0.5
    11批标准化128×0.5
    12ReLU×0.5
    下载: 导出CSV

    表  4  CNN分类器数据集划分详情

    类别训练集验证集测试集
    患者数音频数患者数音频数患者数音频数
    患有HFpEF18254683582
    不患HFpEF17253580589
    合计355061116410171
    下载: 导出CSV

    表  5  不同模型在测试集的预测性能(%)对比

    分类模型AUCACCSENSPE
    SVM0.8000.7660.6590.865
    CNN0.8500.7890.6220.944
    集成模型0.9000.8130.7680.854
    下载: 导出CSV
  • [1] ZHAO Mengya, HE Xianzhen, MIN Xinwen, et al. Recent clinical updates of hypertrophic cardiomyopathy and future therapeutic strategies[J]. Reviews in Cardiovascular Medicine, 2025, 26(2): 25132. doi: 10.31083/RCM25132.
    [2] KRITTANAWONG C, BRITT W M, RIZWAN A, et al. Clinical update in heart failure with preserved ejection fraction[J]. Current Heart Failure Reports, 2024, 21(5): 461–484. doi: 10.1007/s11897-024-00679-5.
    [3] LIU Jie, WANG Dong, RUAN Jieyun, et al. Identification of heart failure with preserved ejection fraction helps risk stratification for hypertrophic cardiomyopathy[J]. BMC Medicine, 2022, 20(1): 21. doi: 10.1186/s12916-021-02219-7.
    [4] CHEN Qinfen, HU Jiandong, HU Jie, et al. Clinical characteristics and prognosis of patients with hypertrophic cardiomyopathy and heart failure with preserved ejection fraction[J]. Clinical Research in Cardiology, 2024, 113(5): 761–769. doi: 10.1007/s00392-023-02371-5.
    [5] YANG Yang, GUO Xingming, WANG Hui, et al. Deep learning-based heart sound analysis for left ventricular diastolic dysfunction diagnosis[J]. Diagnostics, 2021, 11(12): 2349. doi: 10.3390/diagnostics11122349.
    [6] HUIS IN ’T VELD A E, DE MAN F S, VAN ROSSUM A C, et al. How to diagnose heart failure with preserved ejection fraction: The value of invasive stress testing[J]. Netherlands Heart Journal, 2016, 24(4): 244–251. doi: 10.1007/s12471-016-0811-0.
    [7] MICHAUD M, MAURIN V, SIMON M, et al. Patients with high left ventricular filling pressure may be missed applying 2016 echo guidelines: A pilot study[J]. The International Journal of Cardiovascular Imaging, 2019, 35(12): 2157–2166. doi: 10.1007/s10554-019-01667-w.
    [8] BANTHIYA S, CHECK L, and ATKINS J. Hypertrophic cardiomyopathy as a form of heart failure with preserved ejection fraction: Diagnosis, drugs, and procedures[J]. US Cardiology Review, 2024, 18: e17. doi: 10.15420/usc.2023.21.
    [9] 中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024, 52(3): 235–275. doi: 10.3760/cma.j.cn112148-20231101-00405.

    Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, Chinese Heart Failure Association of Chinese Medical Doctor Association, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2024[J]. Chinese Journal of Cardiology, 2024, 52(3): 235–275. doi: 10.3760/cma.j.cn112148-20231101-00405.
    [10] CAMPBELL P, RUTTEN F H, LEE M M, et al. Heart failure with preserved ejection fraction: Everything the clinician needs to know[J]. The Lancet, 2024, 403(10431): 1083–1092. doi: 10.1016/S0140-6736(23)02756-3.
    [11] GHARAGOZLOO K, MEHDIZADEH M, HECKMAN G, et al. Heart failure with preserved ejection fraction in the elderly population: Basic mechanisms and clinical considerations[J]. Canadian Journal of Cardiology, 2024, 40(8): 1424–1444. doi: 10.1016/j.cjca.2024.04.006.
    [12] LUO Hongxing, WEERTS J, BEKKERS A, et al. Association between phonocardiography and echocardiography in heart failure patients with preserved ejection fraction[J]. European Heart Journal - Digital Health, 2023, 4(1): 4–11. doi: 10.1093/ehjdh/ztac073.
    [13] ALTSTIDL J M, ALTSTIDL T R, ANNEKEN L, et al. Detection of aortic stenosis using built-in microphones of commercially available smartphones[J]. European Heart Journal, 2023, 44(S2): ehad655.2983. doi: 10.1093/eurheartj/ehad655.2983.
    [14] REN Huiying, QIN Qirong, DONG Quanbin, et al. Smartphone-measured heart sounds for atrial fibrillation screening in community populations[J]. Circulation, 2025, 152(4): 283–285. doi: 10.1161/CIRCULATIONAHA.125.073828.
    [15] KANG S H, JOE B, YOON Y, et al. Cardiac auscultation using smartphones: Pilot study[J]. JMIR mHealth and uHealth, 2018, 6(2): e49. doi: 10.2196/mhealth.8946.
    [16] LUO Hongxing, LAMATA P, BAZIN S, et al. Smartphone as an electronic stethoscope: Factors influencing heart sound quality[J]. European Heart Journal - Digital Health, 2022, 3(3): 473–480. doi: 10.1093/ehjdh/ztac044.
    [17] LI Yun, ZHAO Zhanjiang, AINIWAER A, et al. Smartphone for heart sound measurement in hospital: Feasibility and influencing factors[J]. European Heart Journal - Digital Health, 2025, 6(3): 486–495. doi: 10.1093/ehjdh/ztaf007.
    [18] GARDEZI S K M, MYERSON S G, CHAMBERS J, et al. Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients[J]. Heart, 2018, 104(22): 1832–1835. doi: 10.1136/heartjnl-2018-313082.
    [19] CHOU J C, YEH C C, and LEE H Y. One-shot voice conversion by separating speaker and content representations with instance normalization[J]. arXiv preprint arXiv: 1904.05742, 2019. (查阅网上资料, 不确定文献类型及格式是否正确, 请确认).
    [20] MIENYE I D and SUN Yanxia. A survey of ensemble learning: Concepts, algorithms, applications, and prospects[J]. IEEE Access, 2022, 10: 99129–99149. doi: 10.1109/ACCESS.2022.3207287.
    [21] 射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023[J]. 中国循环杂志, 2023, 38(4): 375–393. doi: 10.3969/j.issn.1000-3614.2023.04.001.

    Chinese Expert Consensus Working Group on Diagnosis and Treatment of Heart Failure With Preserved Ejection Fraction. Diagnosis and treatment of heart failure with preserved ejection fraction: Chinese expert consensus 2023[J]. Chinese Circulation Journal, 2023, 38(4): 375–393. doi: 10.3969/j.issn.1000-3614.2023.04.001.
    [22] PAULUS W J. H2FPEF score: At last, a properly validated diagnostic algorithm for heart failure with preserved ejection fraction[J]. Circulation, 2018, 138(9): 871–873. doi: 10.1161/CIRCULATIONAHA.118.035711.
    [23] PIESKE B, TSCHÖPE C, DE BOER R A, et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)[J]. European Heart Journal, 2019, 40(40): 3297–3317. doi: 10.1093/eurheartj/ehz641.
    [24] 贾晓艳, 刘离香, 王东伟, 等. H2FPEF和HFA-PEFF评分在我国射血分数保留心力衰竭及射血分数保留心力衰竭合并心房颤动患者中的适用性分析[J]. 中国医学科学院学报, 2024, 46(2): 154–160. doi: 10.3881/j.issn.1000-503X.15826.

    JIA Xiaoyan, LIU Lixiang, WANG Dongwei, et al. Applicability of H2FPEF and HFA-PEFF scores in Chinese patients suffering from heart failure with preserved ejection fraction and heart failure with preserved ejection fraction complicated with atrial fibrillation[J]. Acta Academiae Medicinae Sinicae, 2024, 46(2): 154–160. doi: 10.3881/j.issn.1000-503X.15826.
    [25] AKERMAN A P, AL-ROUB N, ANGELL-JAMES C, et al. External validation of artificial intelligence for detection of heart failure with preserved ejection fraction[J]. Nature Communications, 2025, 16(1): 2915. doi: 10.1038/s41467-025-58283-7.
    [26] REDDY Y N V, CARTER R E, SUNDARAM V, et al. An evidence-based screening tool for heart failure with preserved ejection fraction: The HFpEF-ABA score[J]. Nature Medicine, 2024, 30(8): 2258–2264. doi: 10.1038/s41591-024-03140-1.
    [27] LAENENS D, ZEGKOS T, KAMPERIDIS V, et al. Heart failure risk assessment in patients with hypertrophic cardiomyopathy based on the H2FPEF score[J]. European Journal of Heart Failure, 2024, 26(10): 2173–2182. doi: 10.1002/ejhf.3413.
    [28] GAO Yipeng, LIU Hongyun, BI Xiaojun, et al. H2FPEF and HFA-PEFF scores for heart failure risk stratification in hypertrophic cardiomyopathy patients[J]. ESC Heart Failure, 2025, 12(3): 2225–2238. doi: 10.1002/ehf2.15247.
    [29] LIU Yongmin, GUO Xingming, and ZHENG Yineng. An automatic approach using ELM classifier for HFpEF identification based on heart sound characteristics[J]. Journal of Medical Systems, 2019, 43(9): 285. doi: 10.1007/s10916-019-1415-1.
    [30] ZHENG Yineng, GUO Xingming, YANG Yang, et al. Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion[J]. Computers in Biology and Medicine, 2023, 156: 106707. doi: 10.1016/j.compbiomed.2023.106707.
    [31] ZHAO Qinghao, GENG Shijia, WANG Boya, et al. Deep learning in heart sound analysis: From techniques to clinical applications[J]. Health Data Science, 2024, 4: 0182. doi: 10.34133/hds.0182.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-11-17
  • 录用日期:  2025-12-17
  • 网络出版日期:  2025-12-25

目录

    /

    返回文章
    返回