高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能辅助诊断系统云边大模型协同推理框架与算法研究

何倩 朱磊 李功 游正朋 袁磊 贾斐

何倩, 朱磊, 李功, 游正朋, 袁磊, 贾斐. 智能辅助诊断系统云边大模型协同推理框架与算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250828
引用本文: 何倩, 朱磊, 李功, 游正朋, 袁磊, 贾斐. 智能辅助诊断系统云边大模型协同推理框架与算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250828
HE Qian, ZHU Lei, LI Gong, YOU Zhengpeng, YUAN Lei, JIA Fei. Research on Collaborative Reasoning Framework and Algorithms of Cloud-Edge Large Models for Intelligent Auxiliary Diagnosis Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250828
Citation: HE Qian, ZHU Lei, LI Gong, YOU Zhengpeng, YUAN Lei, JIA Fei. Research on Collaborative Reasoning Framework and Algorithms of Cloud-Edge Large Models for Intelligent Auxiliary Diagnosis Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250828

智能辅助诊断系统云边大模型协同推理框架与算法研究

doi: 10.11999/JEIT250828 cstr: 32379.14.JEIT250828
基金项目: 
详细信息
    作者简介:

    何倩:女,工程师,研究方向为人工智能、5G/5G-A、算力网络在医疗行业的落地应用与产品规划

    朱磊:男,高级工程师,研究方向为面向医疗健康行业的5G/5G-A、算力网络、人工智能等技术研究及标准化

    李功:男,工程师,研究方向为 5G/5G-A、算力网络、人工智能在医疗行业的落地应用与产品设计

    游正朋:男,工程师,研究方向为面向医疗健康行业的5G/5G-A、算力网络、人工智能等技术研究及国际标准推进

    袁磊:男,高级工程师,研究方向为智慧医疗、智慧教育等行业总体技术研究方向规划与产品布局

    贾斐:女,高级工程师,研究方向为医疗信息化、智慧健康等

    通讯作者:

     jiafei@caict.ac.cn

  • 中图分类号: TP391.1

Research on Collaborative Reasoning Framework and Algorithms of Cloud-Edge Large Models for Intelligent Auxiliary Diagnosis Systems

Funds: None
  • 摘要: 大模型在辅助诊断方面潜力大,但本地算力限制和云端医疗数据隐私风险制约其落地。针对此现状,提出一种云边大模型协同推理框架与算法,核心为云边协同推理智能体,集成智能路由与动态语义脱敏能力,实现边缘侧(医院端)与云端(区域云)推理任务的动态分配。智能路由机制基于问题语义特征与历史决策数据优化路径,平衡模型使用成本与诊断精度;动态语义脱敏技术通过识别与分级脱敏策略,在保证隐私安全的同时实现数据安全传输与有效推理。实验表明,该框架在医学实体理解等任务中表现优异,诊断准确率与云端大模型相当,且显著降低模型使用成本,为医疗人工智能系统提供技术范式。未来将聚焦算网资源智能调度、属地化大模型结合检索增强生成(RAG)优化,以及医疗诊断评估指标扩展。
  • 图  1  智能辅助诊断系统云边大模型协同推理框架图

    图  2  智能辅助诊断系统云边大模型协同推理业务流程图

    图  3  实验环境组网图

    图  4  基于CMeKG生成问题的回答准确率

    图  5  基于CPubMedKG生成问题的回答准确率

    图  6  平均消耗token对比图

    图  7  平均耗时对比图

    表  1  智能辅助诊断系统云边大模型协同推理框架适用的典型场景

    适用场景 边缘侧任务 云端任务 框架优势
    门诊分诊 症状初步分析,数据预处理,
    高频问答
    复杂症状深度研判,多维度信息整合
    (病史、区域疾病谱)
    提高分诊效率,结合本地与全局知识,
    提升准确性
    慢病管理 生理数据实时采集,实时风险预警,
    患者互动
    长期健康趋势分析,个性化健康
    计划生成,多中心数据聚合
    实现全程个性化管理,减轻医护负担,
    优化资源分配
    医学影像分析 影像质控,快速初筛,
    关键区域定位,影像预处理
    复杂影像的精细分析、多模态数据
    融合诊断,历史影像对比
    保障质控,提升诊断效率,优化专家资源
    重症监护 实时生命体征监测,异常预警,
    数据预处理
    多模态数据整合分析,复杂病情研判 实时响应,主动预警,减轻医护负担
    健康咨询与导诊 基于本地知识库回答常见问题,
    引导患者就医流程
    处理复杂查询,提供基于大规模知识的建议,
    更新知识库
    快速响应常见需求,云端补充深度信息,
    提升服务质量
    下载: 导出CSV
  • [1] GUO Daya, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. https://arxiv.org/abs/2501.12948, 2025.
    [2] LIU Aixin, FENG Bei, XUE Bing, et al. DeepSeek-V3 technical report[EB/OL]. https://arxiv.org/abs/2412.19437, 2025.
    [3] ZHANG Ziheng, LIN Zhenxi, ZHENG Yefeng, et al. How much medical knowledge do LLMs have? An evaluation of medical knowledge coverage for LLMs[C]. Proceedings of the ACM on Web Conference 2025, Sydney, Australia, 2025: 5330–5341. doi: 10.1145/3696410.3714535.
    [4] VINEELA A, KASIVISWANATH N, and BINDU C S. Data integrity auditing scheme for preserving security in cloud based big data[C]. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2022: 609–613. doi: 10.1109/ICICCS53718.2022.9788365.
    [5] ZHANG Sainan and SONG J. A chatbot based question and answer system for the auxiliary diagnosis of chronic diseases based on large language model[J]. Scientific Reports, 2024, 14(1): 17118. doi: 10.1038/s41598-024-67429-4.
    [6] MAO Yuqiang, XU Nan, WU Yanan, et al. Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images[J]. Cell Reports Medicine, 2025, 6(3): 101988. doi: 10.1016/j.xcrm.2025.101988.
    [7] PANAGOULIAS D P, PALAMIDAS F A, VIRVOU M, et al. Rule-augmented artificial intelligence-empowered systems for medical diagnosis using large language models[C]. 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), Atlanta, USA, 2023: 70–77. doi: 10.1109/ICTAI59109.2023.00018.
    [8] YU Han, GUO Peikun, and SANO A. Zero-shot ECG diagnosis with large language models and retrieval-augmented generation[C]. Proceedings of Machine Learning Research, New Orleans, USA, 2023: 650–663.
    [9] 陈玉平, 刘波, 林伟伟, 等. 云边协同综述[J]. 计算机科学, 2021, 48(3): 259–268. doi: 10.11896/jsjkx.201000109.

    CHEN Yuping, LIU Bo, LIN Weiwei, et al. Survey of cloud-edge collaboration[J]. Computer Science, 2021, 48(3): 259–268. doi: 10.11896/jsjkx.201000109.
    [10] LUO Zeliang, DING Xiaoxuan, HOU Ning, et al. A deep-learning-based collaborative edge-cloud telemedicine system for retinopathy of prematurity[J]. Sensors, 2023, 23(1): 276. doi: 10.3390/s23010276.
    [11] LIU Yehui, XU Aobo, ZENG Hui, et al. Edge computing-based cloud platform for snakebite assisted diagnosis[C]. Proceedings of the 2023 8th International Conference on Biomedical Signal and Image Processing, Chengdu, China, 2023: 18–22. doi: 10.1145/3613307.3613311.
    [12] 王继彬, 张虎, 陈静, 等. 算力网络场景下的超算互联网建设探索与实践[J]. 邮电设计技术, 2024(2): 14–21. doi: 10.12045/j.issn.1007-3043.2024.02.003.

    WANG Jibin, ZHANG Hu, CHEN Jing, et al. Exploration and practice of supercomputing internet construction in computing power network scenarios[J]. Designing Techniques of Posts and Telecommunications, 2024(2): 14–21. doi: 10.12045/j.issn.1007-3043.2024.02.003.
    [13] 李逸博, 李小平, 王爽, 等. 面向算力网络的智慧调度综述[J]. 自动化学报, 2024, 50(6): 1086–1103. doi: 10.16383/j.aas.c230196.

    LI Yibo, LI Xiaoping, WANG Shuang, et al. Survey on wise scheduling in computing power network[J]. Acta Automatica Sinica, 2024, 50(6): 1086–1103. doi: 10.16383/j.aas.c230196.
    [14] GAN Wensheng, WAN Shicheng, and YU P S. Model-as-a-service (MaaS): A survey[C]. 2023 IEEE International Conference on Big Data, Sorrento, Italy, 2023: 4636–4645. doi: 10.1109/BigData59044.2023.10386351.
    [15] 赵婵婵, 吕飞, 石宝, 等. 面向边缘智能的协同推理方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 1–20. doi: 10.3778/j.issn.1002-8331.2406-0040.

    ZHAO Chanchan, LYU Fei, SHI Bao, et al. Review of collaborative inference methods for edge intelligence[J]. Computer Engineering and Applications, 2025, 61(3): 1–20. doi: 10.3778/j.issn.1002-8331.2406-0040.
    [16] 庄严, 张军雁, 卢若谷, 等. 基于医学大模型的智能问诊助手构建研究[J]. 解放军医学院学报, 2025, 46(2): 126–133. doi: 10.12435/j.issn.2095-5227.24070108.

    ZHUANG Yan, ZHANG Junyan, LU Ruogu, et al. Constructing an intelligent consultation assistant system based on medical large language models[J]. Academic Journal of Chinese PLA Medical School, 2025, 46(2): 126–133. doi: 10.12435/j.issn.2095-5227.24070108.
    [17] ZHANG Xianwei, WU Peng, CAI Jiuming, et al. A contrastive study of Chinese text segmentation tools in marketing notification texts[J]. Journal of Physics: Conference Series, 2019, 1302(2): 022010. doi: 10.1088/1742-6596/1302/2/022010.
    [18] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, USA, 2019: 4171–4186. doi: 10.18653/v1/N19-1423.
    [19] ROMEO J, ABBASS M, SHERIF A, et al. Privacy-preserving machine learning for E-health applications: A survey[C]. 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), Mt Pleasant, USA, 2024: 1–6. doi: 10.1109/ICMI60790.2024.10586115.
    [20] 奥德玛, 杨云飞, 穗志方, 等. 中文医学知识图谱CMeKG构建初探[J]. 中文信息学报, 2019, 33(10): 1–9. doi: 10.3969/j.issn.1003-0077.2019.10.001.

    AO Dema, YANG Yunfei, SUI Zhifang, et al. Preliminary study on the construction of Chinese medical knowledge graph[J]. Journal of Chinese Information Processing, 2019, 33(10): 1–9. doi: 10.3969/j.issn.1003-0077.2019.10.001.
    [21] LI Bin, SUN Bin, LI Shutao, et al. Distinct but correct: Generating diversified and entity-revised medical response[J]. Science China Information Sciences, 2024, 67(3): 132106. doi: 10.1007/s11432-021-3534-9.
    [22] 赵鹏, 李金翼, 王琛, 等. 人工智能能力与算力网络智慧运营研究与应用[J]. 计算机应用, 2025, 45(S1): 295–301.

    ZHAO Peng, LI Jinyi, WANG Chen, et al. Research and application on intelligent operation of artificial intelligence capability and computing power network[J]. Journal of Computer Applications, 2025, 45(S1): 295–301.
    [23] REZAEI M R, FARD R S, PARKER J L, et al. Agentic medical knowledge graphs enhance medical question answering: Bridging the gap between LLMs and evolving medical knowledge[C]. Findings of the Association for Computational Linguistics, Suzhou, China, 2025: 12682–12701. doi: 10.18653/v1/2025.findings-emnlp.679.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-11-05
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回