高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有源可重构智能表面辅助的共生安全通信系统鲁棒资源分配算法

马锐 李亚南 田团伟 刘舒雅 邓浩 张锦龙

马锐, 李亚南, 田团伟, 刘舒雅, 邓浩, 张锦龙. 有源可重构智能表面辅助的共生安全通信系统鲁棒资源分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT250811
引用本文: 马锐, 李亚南, 田团伟, 刘舒雅, 邓浩, 张锦龙. 有源可重构智能表面辅助的共生安全通信系统鲁棒资源分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT250811
MA Rui, LI Yanan, TIAN Tuanwei, LIU Shuya, DENG Hao, ZHANG Jinlong. Robust Resource Allocation Algorithm for Active Reconfigurable Intelligent Surface-Assisted Symbiotic Secure Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250811
Citation: MA Rui, LI Yanan, TIAN Tuanwei, LIU Shuya, DENG Hao, ZHANG Jinlong. Robust Resource Allocation Algorithm for Active Reconfigurable Intelligent Surface-Assisted Symbiotic Secure Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250811

有源可重构智能表面辅助的共生安全通信系统鲁棒资源分配算法

doi: 10.11999/JEIT250811 cstr: 32379.14.JEIT250811
基金项目: 国家自然科学基金(62301210),中国博士后科学基金(GZC20240411),河南省科技攻关项目(242102211102),河南省博士后科研项目(HN2025023),中国博士后科学基金第18批特别资助项目(2025T180958),河南省自然科学基金(252300421800)
详细信息
    作者简介:

    马锐:女,讲师,研究方向为共生无线电、性能分析与优化、可重构智能超表面

    李亚南:男,硕士生,研究方向为共生无线电、可重构智能超表面、资源分配与优化

    田团伟:男,副教授,研究方向为阵列信号处理、雷达信号处理、通信感知一体化

    刘舒雅:女,硕士生,研究方向为隐蔽通信、可重构智能超表面

    邓浩:男,副教授,研究方向为物理层安全、通信感知一体化、无线资源管理

    张锦龙:男,教授,研究方向为无线通信、光纤传感、光子芯片

    通讯作者:

    马锐 mar@henu.edu.cn

  • 11)系统中IR与Eve同处RIS的反射区域。当二者位置邻近时,可利用有源RIS的放大功能主动生成一个针对Eve的零陷或人工噪声,或通过PTx与外部友好的干扰机引入人工噪声,从而降低Eve的窃听SINR。2)本系统可应用于实际的蜂窝IoT场景,其中PTx是基站,RIS是IoT终端,IR是混合的蜂窝用户。
  • 23)考虑Eve是一个活跃但安全等级低的用户;因此,通过两阶段信道估计[21]、残差神经网络[22]与量化感知[23]等方法,可获得IR与Eve相关的CSI。4)为简化分析,本文假设PTx的发射功率已受功率控制协议约束,而有源RIS作为一个新兴的辅助设备,对其进行功率约束能更清晰地展现其对系统总功耗的影响。
  • 中图分类号: TN92

Robust Resource Allocation Algorithm for Active Reconfigurable Intelligent Surface-Assisted Symbiotic Secure Communication Systems

Funds: The National Natural Science Foundation of China (62301210), The Postdoctoral Science Foundation of China (GZC20240411), The Science and Technology Research Project of Henan Province (242102211102), The Postdoctoral Research Project of Henan Province (HN2025023), The 18th Special Funding Project of China Postdoctoral Science Foundation (2025T180958), The Natural Science Foundation of Henan Province (252300421800)
  • 摘要: 针对有源可重构智能表面(RIS)辅助共生安全通信的系统总功耗问题,该文提出一种基于惩罚的鲁棒资源分配算法。考虑不完美的串行干扰消除,在主系统安全性、次系统可靠性,以及有源RIS的相移与功率约束下,通过联合优化发射机波束赋形向量与有源RIS反射系数矩阵,建立了一个基于线性函数模型的鲁棒系统总功耗最小化资源分配问题。利用交替优化方法将上述变量与约束高度耦合的非凸问题解耦,通过变量替换、等价转换与基于惩罚的连续凸逼近将子问题转换成凸优化问题,最后利用CVX对子问题进行求解。仿真结果表明,所提算法具有良好的收敛性,且相比经典的无源RIS,系统总功耗降低89%。
  • 图  1  有源RIS辅助的多输入单输出共生安全通信系统

    图  2  优化PTx发射波束赋形向量的流程图

    图  3  迭代收敛图

    图  4  系统总功耗与$ \gamma _c^{\min } $的关系

    图  5  不同算法的性能对比

    图  6  主系统的安全能效与$ R_s^{\min } $的关系

    图  7  系统总功耗与$ {d_s} $的关系

    表  1  算法1 基于惩罚的鲁棒资源分配算法

     初始化参数:$ {P_I} $,KN, L,$ {C_0} $,$ R_s^{\min } $,$ \gamma _c^{\min } $,$ \mu $,$ \sigma _i^2 $,
     $ \sigma _e^2 $,$ \sigma _A^2 $,$ \eta $,$ {{\boldsymbol{w}}^{(0)}} $,$ {{\boldsymbol{Q}}^{(0)}} $;设置收敛精度$ \varepsilon = {\varepsilon _1} = {\varepsilon _2} \ge 0 $,
     内外层最大迭代次数${I_{\max }}$,初始化外层迭代次数$ I = 0 $,内层迭
     代次数$ {I_1} = {I_2} = 0 $;
     (1) While $ \Gamma ({{\boldsymbol{w}}^{(I + 1)}},{{\boldsymbol{Q}}^{(I + 1)}}) - \Gamma ({{\boldsymbol{w}}^{(I)}},{{\boldsymbol{Q}}^{(I)}}) \ge \varepsilon $或$I \le {I_{\max }}$
     do
     (2) While $ |tr{({\boldsymbol{W}})^{({I_1})}} - {\kappa _{max}}{({\boldsymbol{W}})^{({I_1} - 1)}}| \ge {\varepsilon _1} $或${I_1} \le {I_{\max }}$ do
     (3) 给定$ {{\boldsymbol{w}}^{(I)}} $,$ {{\boldsymbol{Q}}^{(I)}} $,求解问题式(10)获得$ {{\boldsymbol{W}}^{({I_1})}} $,
     $ {I_1} = {I_1} + 1 $;
     (4) End While
     (5) $ {{\boldsymbol{W}}^{({I_1})}} = {{\boldsymbol{W}}^{({I_1} + 1)}} $;
     (6) While $ |tr({\boldsymbol{F}}{{\boldsymbol{U}}^{({I_2})}}) - tr({\boldsymbol{F}}{{\boldsymbol{U}}^{({I_2} - 1)}})| \ge {\varepsilon _2} $或${I_2} \le {I_{\max }}$ do
     (7) 给定$ {{\boldsymbol{W}}^{({I_1})}} $,求解问题式(15)获得$ {{\boldsymbol{Q}}^{({I_2})}} $,$ {I_2} = {I_2} + 1 $;
     (8) End While
     (9) $ {{\boldsymbol{Q}}^{({I_2})}} = {{\boldsymbol{Q}}^{({I_2} + 1)}} $;
     (10) 计算$ \Gamma ({{\boldsymbol{w}}^{(I)}},{{\boldsymbol{Q}}^{(I)}}) $;
     (11) 设置迭代次数$ I = I + 1 $;
     (12) End While
    下载: 导出CSV
  • [1] ZHANG Qianqian, LIANG Yingchang, YANG Hongchuan, et al. Mutualistic mechanism in symbiotic radios: When can the primary and secondary transmissions be mutually beneficial?[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8036–8050. doi: 10.1109/TWC.2022.3163735.
    [2] WANG Chaowei, PANG Mingliang, CUI Gaofeng, et al. Joint waveform design and detection in symbiotic ambient backscatter NOMA systems[J]. IEEE Internet of Things Journal, 2023, 10(22): 19507–19517. doi: 10.1109/JIOT.2023.3263967.
    [3] QI Weijing, ZHONG Yiying, SONG Qingyang, et al. Secondary network capacity optimization for IRS- and WPT-assisted symbiotic radio systems[J]. IEEE Internet of Things Journal, 2025, 12(11): 16467–16477. doi: 10.1109/JIOT.2025.3532686.
    [4] 张倩倩, 王俊, 梁应敞. 面向6G的共生散射通信技术: 原理、方法与应用[J]. 中国科学: 信息科学, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.

    ZHANG Qianqian, WANG Jun, and LIANG Yingchang. Symbiotic backscatter communications for 6G: Principles, approaches, and applications[J]. SCIENTIA SINICA: Informationis, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.
    [5] XU Yongjun, TIAN Qinyu, XUE Qing, et al. Robust resource allocation for symbiotic radio systems with imperfect CSI and eavesdropper[J]. IEEE Wireless Communications Letters, 2024, 13(4): 1188–1192. doi: 10.1109/LWC.2024.3364833.
    [6] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [7] TU Zhixing, LONG Ruizhe, PEI Yiyang, et al. RIS-enabled full-duplex backscatter communication in multi-user symbiotic radio[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 16261–16274. doi: 10.1109/TWC.2024.3439622.
    [8] ZHANG Qianqian, ZHOU Hu, LIANG Yingchang, et al. Channel capacity of RIS-Assisted symbiotic radios with imperfect knowledge of channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(3): 938–952. doi: 10.1109/TCCN.2024.3379406.
    [9] CAO Kaitian and TANG Qi. Energy efficiency maximization for RIS-assisted MISO symbiotic radio systems based on deep reinforcement learning[J]. IEEE Communications Letters, 2024, 28(1): 88–92. doi: 10.1109/LCOMM.2023.3333324.
    [10] WANG Chao, LI Zan, ZHENG Tongxing, et al. Intelligent reflecting surface-aided secure broadcasting in millimeter wave symbiotic radio networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11050–11055. doi: 10.1109/TVT.2021.3108452.
    [11] HE Xiuli, XU Hongbo, WANG Ji, et al. Joint active and passive beamforming in RIS-assisted covert symbiotic radio based on deep unfolding[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 14021–14026. doi: 10.1109/TVT.2024.3393724.
    [12] JI Baofeng, ZHANG Jingjing, ZHANG Hui, et al. Performance analysis of RIS-enhanced secure transmission for symbiotic IoV systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 454–464. doi: 10.1109/TCCN.2024.3431925.
    [13] WEN Yingkun, WANG Fengshuan, WANG Huiming, et al. Cooperative jamming aided secure communication for RIS enabled symbiotic radio systems[J]. IEEE Transactions on Communications, 2025, 73(5): 2936–2949. doi: 10.1109/TCOMM.2024.3481038.
    [14] 吴翠先, 周春宇, 徐勇军, 等. 智能反射面辅助的多入单出共生无线电鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426.

    WU Cuixian, ZHOU Chunyu, XU Yongjun, et al. Robust secure resource allocation algorithm for multiple input single output symbiotic radio with reconfigurable intelligent surface assistance[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426.
    [15] LIU Tianji, ZHOU Hu, LONG Ruizhe, et al. Improving physical layer security with RIS-assisted symbiotic radio[C]. Proceedings of 2024 IEEE International Conference on Communications, Denver, USA, 2024: 593–598. doi: 10.1109/ICC51166.2024.10622723.
    [16] LONG Ruizhe, LIANG Yingchang, and DI RENZO M. Active reconfigurable intelligent surface-based symbiotic radio: Boosting mutual benefits[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 423–436. doi: 10.1109/TCCN.2024.3417625.
    [17] ZHOU Chao, LYU Bin, GONG Shimin, et al. Active STAR-RIS-assisted symbiotic radio communications under hardware impairments[J]. IEEE Communications Letters, 2023, 27(10): 2797–2801. doi: 10.1109/LCOMM.2023.3307723.
    [18] LYU Bin, ZHOU Chao, GONG Shimin, et al. Robust secure transmission for active RIS enabled symbiotic radio multicast communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8766–8780. doi: 10.1109/TWC.2023.3265770.
    [19] 郝万明, 曾齐, 王芳, 等. 耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信[J]. 电子与信息学报, 2024, 46(9): 3544–3552. doi: 10.11999/JEIT240149.

    HAO Wanming, ZENG Qi, WANG Fang, et al. Active simultaneously transmitting and reflecting reconfigurable intelligent surface assisted multi-user security communication with coupled phase shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544–3552. doi: 10.11999/JEIT240149.
    [20] LI Xuehua, PEI Yingjie, YUE Xinwei, et al. Secure communication of active RIS assisted NOMA networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4489–4503. doi: 10.1109/TWC.2023.3319450.
    [21] HE Zhenqing and YUAN Xiaojun. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210–214. doi: 10.1109/LWC.2019.2948632.
    [22] JIN Yu, ZHANG Jiayi, ZHANG Xiaodan, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083–11088. doi: 10.1109/TVT.2021.3109937.
    [23] XIONG Youzhi, QIN Lang, SUN Sanshan, et al. Joint effective channel estimation and data detection for RIS-aided massive MIMO systems with low-resolution ADCs[J]. IEEE Communications Letters, 2023, 27(2): 721–725. doi: 10.1109/LCOMM.2022.3232217.
    [24] LV Weigang, BAI Jiale, YAN Qingli, et al. RIS-assisted green secure communications: Active RIS or passive RIS?[J]. IEEE Wireless Communications Letters, 2023, 12(2): 237–241. doi: 10.1109/LWC.2022.3221609.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  24
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 修回日期:  2025-11-05
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回