高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FDIA下融合高阶容积卡尔曼滤波与LSTM的配电网动态状态估计

许大星 苏磊 韩鹤乔 王海伦 张恒 陈博

许大星, 苏磊, 韩鹤乔, 王海伦, 张恒, 陈博. FDIA下融合高阶容积卡尔曼滤波与LSTM的配电网动态状态估计[J]. 电子与信息学报. doi: 10.11999/JEIT250805
引用本文: 许大星, 苏磊, 韩鹤乔, 王海伦, 张恒, 陈博. FDIA下融合高阶容积卡尔曼滤波与LSTM的配电网动态状态估计[J]. 电子与信息学报. doi: 10.11999/JEIT250805
XU Daxing, SU Lei, HAN Heqiao, WANG Hailun, ZHANG Heng, CHEN Bo. Dynamic State Estimation of Distribution Network by Integrating High-degree Cubature Kalman Filter and LSTM Under FDIA[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250805
Citation: XU Daxing, SU Lei, HAN Heqiao, WANG Hailun, ZHANG Heng, CHEN Bo. Dynamic State Estimation of Distribution Network by Integrating High-degree Cubature Kalman Filter and LSTM Under FDIA[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250805

FDIA下融合高阶容积卡尔曼滤波与LSTM的配电网动态状态估计

doi: 10.11999/JEIT250805 cstr: 32379.14.JEIT250805
基金项目: 国家自然科学基金(62441311),衢州市科技计划项目(s2025K069)
详细信息
    作者简介:

    许大星:男,副教授,研究方向为信息物理系统状态估计、非线性滤波、安全融合估计等

    苏磊:男,硕士,研究方向为配电网状态估计等

    韩鹤乔:男,硕士生,研究方向为配电网状态估计等

    王海伦:女,教授,研究方向为智能检测、智能系统设计、状态估计、故障诊断等

    张恒:男,教授,研究方向为信息物理系统状态估计、人工智能算法及应用、海洋无人系统等

    陈博:男,教授,研究方向为信息融合估计理论、网络攻击下的入侵检测、安全估计与控制等

    通讯作者:

    王海伦 wanghl@qzc.edu.cn

  • 中图分类号: TN919.72

Dynamic State Estimation of Distribution Network by Integrating High-degree Cubature Kalman Filter and LSTM Under FDIA

Funds: The National Natural Science Foundation of China (62441311), Quzhou Science and Technology Plan Project (2025K206)
  • 摘要: 配电网动态状态估计是保障电力物理信息系统安全稳定运行的关键技术,但系统的强非线性、高维特性及虚假数据注入攻击(FDIA)严重制约了其精度与安全。针对上述问题,本文提出一种融合高阶容积卡尔曼滤波(HCKF)与长短期记忆网络(LSTM)的动态状态估计方法。首先,建立基于混合量测的配电系统状态估计模型,并利用HCKF通过高阶容积点生成策略提升对强非线性高维配电网的状态估计精度;其次,结合加权最小二乘法(WLS)与HCKF的状态估计值,基于残差分析实现FDIA的快速检测;最后,当检测到FDIA时,利用LSTM模型对受攻击节点的量测数据进行时序预测与重构,修正状态估计结果。在IEEE33节点配电系统上的实验表明,在无FDIA时基于HCKF的动态状态估计算法对电压幅值和相角的估计精度高于现有方法。在FDIA场景下,验证了基于残差分析的攻击检测方法、基于LSTM的量测数据预测,以及所提动态状态估计算法的有效性。
  • 图  1  基于动态状态估计的FDIA攻击检测流程

    图  2  LSTM模型结构

    图  3  融合HCKF与LSTM的配电网动态状态估计流程

    图  4  含PMU安置位置的IEEE33节点配电系统

    图  5  第7号节点状态估计相对误差曲线

    图  6  FDIA检验与不良数据检验结果

    图  7  FDIA检测图

    图  8  四种算法对电压幅值和相角估计曲线

    表  1  不同量测装置的测量标准差

    测量方式注入功率支路功率电压幅值电压相角
    PMU$ {10}^{-5} $$ {10}^{-5} $0.0050.002
    SCADA$ {10}^{-4} $$ {10}^{-4} $0.02------
    下载: 导出CSV

    表  2  LSTM预测性能

    性能指标第18号节点第17号支路
    有功功率无功功率有功功率无功功率
    RMSE4.89e-062.06e-061.17e-052.22e-06
    MAE3.89e-061.58e-069.25e-061.78e-06
    下载: 导出CSV
  • [1] 方洁, 张少辉, 江泳. 基于改进自适应协同控制方法的电力系统混沌控制[J]. 电子与信息学报, 2024, 46(2): 728–737. doi: 10.11999/JEIT230075.

    FANG Jie, ZHANG Shaohui, and JIANG Yong. Chaotic power system control based on improved adaptive synergetic control method[J]. Journal of Electronics & Information Technology, 2024, 46(2): 728–737. doi: 10.11999/JEIT230075.
    [2] 邓洪高, 余润华, 纪元法, 等. 偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法[J]. 电子与信息学报, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.

    DENG Honggao, YU Runhua, JI Yuanfa, et al. An adaptive target tracking method utilizing marginalized cubature Kalman filter with uncompensated biases[J]. Journal of Electronics & Information Technology, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.
    [3] TIAN Jiwei, SHEN Chao, WANG Buhong, et al. LESSON: Multi-label adversarial false data injection attack for deep learning locational detection[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(5): 4418–4432. doi: 10.1109/TDSC.2024.3353302.
    [4] XIAO Liang, CHEN Haoyu, XU Shiyu, et al. Reinforcement learning-based false data injection attacks in smart grids[J]. IEEE Transactions on Industrial Informatics, 2025, 21(4): 3475–3484. doi: 10.1109/TII.2025.3528571.
    [5] GUO Mengmeng, HAO Yongsheng, LEE K. Y, et al. Extended-state Kalman filter-based model predictive control and energy-saving performance analysis of a coal-fired power plant[J]. Energy, 2025, 314: 134169. doi: 10.1016/j.energy.2024.134169.
    [6] NGUYEN D V, ZHAO Haiquan, HU Jinhui, et al. Adaptive robust unscented Kalman filter for dynamic state estimation of power system[J]. IEEE Transactions on Industrial Informatics, 2025, 21(7): 5081–5092. doi: 10.1109/TII.2025.3545093.
    [7] SHARMA A, SRIVASTAVA S C, and CHAKRABARTI S. A cubature Kalman filter based power system dynamic state estimator[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 2036–2045. doi: 10.1109/TIM.2017.2677698.
    [8] BASETTI V, CHANDEL A K, and SHIVA C K. Square-root cubature Kalman filter based power system dynamic state estimation[J]. Sustainable Energy, Grids and Networks, 2022, 31: 100712. doi: 10.1016/j.segan.2022.100712.
    [9] LIU Bo and WU Hongyu. Low-rank false data injection attacks with incomplete network information against machine-learning detectors[J]. IEEE Transactions on Industrial Informatics, 2025, 21(4): 2868–2877. doi: 10.1109/TII.2024.3513481.
    [10] LIU Yifa, CHENG Long, and YE Dan. Stealthy false data injection attacks against the summation detector in cyber-physical systems[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2024, 2: 391–403. doi: 10.1109/TICPS.2024.3446469.
    [11] RAGHUVAMSI Y and TEEPARTHI K. Detection and reconstruction of measurements against false data injection and DoS attacks in distribution system state estimation: A deep learning approach[J]. Measurement, 2023, 210: 112565. doi: 10.1016/j.measurement.2023.112565.
    [12] 黄崇鑫, 洪明磊, 伏帅, 等. 考虑虚假数据注入攻击的有源配电网分布式状态估计[J]. 电力工程技术, 2022, 41(3): 22–31. doi: 10.12158/j.2096-3203.2022.03.003.

    HUANG Chongxin, HONG Minglei, FU Shuai, et al. Distributed state estimation of active distribution network considering false data injection attack[J]. Electric Power Engineering Technology, 2022, 41(3): 22–31. doi: 10.12158/j.2096-3203.2022.03.003.
    [13] XU Junjun, ZHANG Sheng, LIN Tong, et al. A distributed secure state estimation framework for unbalanced active distribution systems[J]. IEEE Transactions on Smart Grid, 2025, 16(5): 3714–3727. doi: 10.1109/TSG.2025.3587483.
    [14] DONG Lewei, XU Huiling, PARK J H, et al. Intermediate-variable-based robust state estimation for cyber–physical systems against FDI attacks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(5): 2719–2723. doi: 10.1109/TCSII.2024.3351159.
    [15] MIAO Kelei, ZHANG Wen’an, and QIU Xiang. An adaptive unscented Kalman filter approach to secure state estimation for wireless sensor networks[J]. Asian Journal of Control, 2023, 25(1): 629–636. doi: 10.1002/asjc.2783.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-01
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回