高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向大语言模型的海域通信物理层认证技术

陈乔鑫 肖亮 王鹏程 李杰铃 姚锦清 徐小宇

陈乔鑫, 肖亮, 王鹏程, 李杰铃, 姚锦清, 徐小宇. 面向大语言模型的海域通信物理层认证技术[J]. 电子与信息学报. doi: 10.11999/JEIT250804
引用本文: 陈乔鑫, 肖亮, 王鹏程, 李杰铃, 姚锦清, 徐小宇. 面向大语言模型的海域通信物理层认证技术[J]. 电子与信息学报. doi: 10.11999/JEIT250804
CHEN Qiaoxin, XIAO Liang, WANG Pengcheng, LI Jieling, YAO Jinqing, XU Xiaoyu. Physical Layer Authentication for Large Language Models in Maritime Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250804
Citation: CHEN Qiaoxin, XIAO Liang, WANG Pengcheng, LI Jieling, YAO Jinqing, XU Xiaoyu. Physical Layer Authentication for Large Language Models in Maritime Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250804

面向大语言模型的海域通信物理层认证技术

doi: 10.11999/JEIT250804 cstr: 32379.14.JEIT250804
基金项目: 国家自然科学基金(U21A20444),中央高校基本科研业务费专项资金资助(20720250036),国家重点研发计划(2023YFB3107603)
详细信息
    作者简介:

    陈乔鑫:男,博士研究生,研究方向为无线安全和智能安全检测

    肖亮:女,教授,研究方向为无线通信,网络安全,机器学习和人工智能安全

    王鹏程:男,硕士研究生,研究方向为无线安全认证

    李杰铃:男,博士研究生,研究方向为无人机安全组网

    姚锦清:男,博士研究生,研究方向为通信与信息系统和无线安全

    徐小宇:男,硕士研究生,研究方向为大语言模型协同推断和大模型安全

    通讯作者:

    肖亮 lxiao@xmu.edu.cn

  • 中图分类号: TN918.91

Physical Layer Authentication for Large Language Models in Maritime Communications

Funds: National Natural Science Foundation of China (U21A20444), Fundamental Research Funds for the Central Universities (20720250036), National Key Research and Development Program of China (2023YFB3107603)
  • 摘要: 物理层认证快速识别电子欺骗等攻击,但海域短包通信的信道估计误差大,且海域信道变化剧烈,造成认证精度低,速度慢,难以支撑基于大语言模型的智慧海洋业务。为此,本文研究面向大语言模型的海域通信物理层认证,根据终端无线信道和数据包的多种物理层特征,基于假设检验设计多模式认证机制,适配摄像头和温湿度传感器等多类型终端的长短包通信方式,并结合大语言模型推断结果的环境指示等,利用强化学习持续优化认证模式和检测阈值,提高认证精度和速度。设计漏报风险评估机制,修正认证策略分布,结合持续学习机制挖掘甲板和船舱等多场景下的多尺度认证经验,并在相似场景中快速回放,加速认证策略优化。基于LLaVA-1.5-7B大语言模型和海域实测信道数据的仿真结果表明,所提方案可显著提升认证精度和速度,防御多场景船载终端在大语言模型边缘推断过程中的电子欺骗等攻击,支撑智慧海洋业务。
  • 图  1  面向大语言模型的海域无线物理层认证场景

    图  2  认证精度拟合曲线

    图  3  算法性能界收敛图

    图  4  系统部署方案示意图

    图  5  仿真拓扑图

    图  6  环境感知辅助的海域物理层认证性能

    图  7  环境感知辅助的海域物理层认证消融分析

    图  8  环境感知精度对海域物理层认证的影响

    表  1  重要符号和含义

    符号含义
    $ N $智能设备个数
    $ J $大语言模型可推断数据模态数
    $ \boldsymbol{Z}_{0}^{(k)} $/$ \boldsymbol{Z}_{1}^{(k)} $/$ \boldsymbol{Z}_{2\leq i\leq J}^{(k)} $预设文本提示模板/图像/传感器数据
    $ \boldsymbol{C}_{1\leq i\leq J}^{(k)} $多模态数据生成的词元向量
    $ {f}_{n} $智能设备$ n $的传输中心频点
    $ {W}_{n} $传输带宽
    $ l_{n}^{(k)} $媒体访问控制地址
    $ {\rho }^{(k)} $数据包优先级
    $ {\boldsymbol{H}}^{(k)} $信道状态向量
    $ {\tau }^{(k)} $数据包到达时间间隔
    $ N_{\text{T}}^{(k)} $待认证数据包总数
    $ N_{\text{P}}^{(k)} $通过物理层认证的数据包个数
    $ N_{\text{M}}^{(k)} $漏报的虚假数据包个数
    下载: 导出CSV
  • [1] 鲁信金, 施育鑫, 雷菁, 等. 无线通信物理层内生安全: 关键技术、优势与未来挑战[J]. 通信学报, 2024, 45(S1): 87–96. doi: 10.11959/j.issn.1000-436x.2024210.

    LU Xinjin, SHI Yuxin, LEI Jing, et al. Endogenous security in the physical layer of wireless communications: Key technologies, advantages and future challenges[J]. Journal on Communications, 2024, 45(S1): 87–96. doi: 10.11959/j.issn.1000-436x.2024210.
    [2] ZHANG Xinyuan, NIE Jiangtian, HUANG Yudong, et al. Beyond the cloud: Edge inference for generative large language models in wireless networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(1): 643–658. doi: 10.1109/TWC.2024.3497923.
    [3] LU Xiaozhen, XIAO Liang, XU Tangwei, et al. Reinforcement learning based PHY authentication for VANETs[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3068–3079. doi: 10.1109/TVT.2020.2967026.
    [4] WANG Qi, PANG Zhibo, LIANG Wei, et al. Spatiotemporal gradient-based physical-layer authentication enhanced by CSI-to-image transformation for industrial mobile devices[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4236–4245. doi: 10.1109/TII.2023.3316178.
    [5] DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298.
    [6] LIN Jiaying, DIEKMANN P, FRAMING C E, et al. Maritime environment perception based on deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15487–15497. doi: 10.1109/TITS.2022.3140933.
    [7] ZHAO Changyuan, DU Hongyang, NIYATO D, et al. Generative AI for secure physical layer communications: A survey[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 3–26. doi: 10.1109/TCCN.2024.3438379.
    [8] 杨立君, 李明航, 陆海涛, 等. 基于信道指纹的毫米波MIMO系统身份欺骗攻击检测方案[J]. 电子与信息学报, 2023, 45(12): 4228–4234. doi: 10.11999/JEIT220934.

    YANG Lijun, LI Minghang, LU Haitao, et al. Spoofing attack detection scheme based on channel fingerprint for millimeter wave MIMO system[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4228–4234. doi: 10.11999/JEIT220934.
    [9] NOSOUHI M R, SOOD K, GROBLER M, et al. Towards spoofing resistant next generation IoT networks[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1669–1683. doi: 10.1109/TIFS.2022.3170276.
    [10] WU Yuemei, WEI Dong, GUO Caili, et al. Physical layer authentication based on channel polarization response in dual-polarized antenna communication systems[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2144–2159. doi: 10.1109/TIFS.2023.3263624.
    [11] MENG Rui, XU Xiaodong, WANG Bizhu, et al. Physical-layer authentication based on hierarchical variational autoencoder for Industrial Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10(3): 2528–2544. doi: 10.1109/JIOT.2022.3213593.
    [12] HOANG T M, VAN CHIEN T, VAN LUONG T, et al. Detection of spoofing attacks in aeronautical ad-hoc networks using deep autoencoders[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1010–1023. doi: 10.1109/TIFS.2022.3155970.
    [13] 毛丹丹, 王宁, 甄姬娜, 等. 基于毫米波MIMO信道多维优势提取的密钥协商方法[J]. 通信学报, 2025, 46(1): 124–143. doi: 10.11959/j.issn.1000-436x.2025005.

    MAO Dandan, WANG Ning, ZHEN Ji’na, et al. Key agreement method based on multi-dimensional advantage distillation over mmWave MIMO channels[J]. Journal on Communications, 2025, 46(1): 124–143. doi: 10.11959/j.issn.1000-436x.2025005.
    [14] 宋华伟, 金梁, 张胜军. 基于标签信号的物理层安全认证[J]. 电子与信息学报, 2018, 40(5): 1066–1071. doi: 10.11999/JEIT170672.

    SONG Huawei, JIN Liang, ZHANG Shengjun. Physical layer authentication based on tag signal[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1066–1071. doi: 10.11999/JEIT170672.
    [15] FANG He, WANG Xianbin, and HANZO L. Learning-aided physical layer authentication as an intelligent process[J]. IEEE Transactions on Communications, 2019, 67(3): 2260–2273. doi: 10.1109/TCOMM.2018.2881117.
    [16] ABDRABOU M and GULLIVER T A. Adaptive physical layer authentication using machine learning with antenna diversity[J]. IEEE Transactions on Communications, 2022, 70(10): 6604–6614. doi: 10.1109/TCOMM.2022.3196648.
    [17] XIAO Liang, WAN Xiaoyue, and HAN Zhu. PHY-layer authentication with multiple landmarks with reduced overhead[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1676–1687. doi: 10.1109/TWC.2017.2784431.
    [18] FANG He, XIAO Zhenlong, WANG Xianbin, et al. Collaborative authentication for 6G networks: An edge intelligence based autonomous approach[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2091–2103. doi: 10.1109/TIFS.2023.3263636.
    [19] SCIANCALEPORE S, TEDESCHI P, AZIZ A, et al. Auth-AIS: Secure, flexible, and backward-compatible authentication of vessels AIS broadcasts[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2709–2726. doi: 10.1109/TDSC.2021.3069428.
    [20] ZHANG Peiying, WANG Yaqi, AUJLA G S, et al. A blockchain-based authentication scheme and secure architecture for IoT-enabled maritime transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2322–2331. doi: 10.1109/TITS.2022.3159485.
    [21] VANGALA A, AGRAWAL S, DAS A K, et al. Big data-enabled authentication framework for offshore maritime communication using drones[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10196–10210. doi: 10.1109/TVT.2024.3367945.
    [22] BENNA M K and FUSI S. Computational principles of synaptic memory consolidation[J]. Nature Neuroscience, 2016, 19(12): 1697–1706. doi: 10.1038/nn.4401.
    [23] POPOVSKI P, STEFANOVIĆ Č, NIELSEN J J, et al. Wireless access in ultra-reliable low-latency communication (URLLC)[J]. IEEE Transactions on Communications, 2019, 67(8): 5783–5801. doi: 10.1109/TCOMM.2019.2914652.
    [24] XIAO Liang, LU Xiaozhen, XU Tangwei, et al. Reinforcement learning-based physical-layer authentication for controller area networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2535–2547. doi: 10.1109/TIFS.2021.3056206.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-27
  • 修回日期:  2025-12-06
  • 录用日期:  2025-12-06
  • 网络出版日期:  2025-12-11

目录

    /

    返回文章
    返回