高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等效跨导补偿的负载调制增强准理想Doherty射频功率放大器研究

华均 许高明 陈景豪 陆思炀 尤蕾渊 吕言 李刚 史卫民 刘太君

华均, 许高明, 陈景豪, 陆思炀, 尤蕾渊, 吕言, 李刚, 史卫民, 刘太君. 等效跨导补偿的负载调制增强准理想Doherty射频功率放大器研究[J]. 电子与信息学报. doi: 10.11999/JEIT250789
引用本文: 华均, 许高明, 陈景豪, 陆思炀, 尤蕾渊, 吕言, 李刚, 史卫民, 刘太君. 等效跨导补偿的负载调制增强准理想Doherty射频功率放大器研究[J]. 电子与信息学报. doi: 10.11999/JEIT250789
HUA Jun, XU Gaoming, CHEN Jinghao, LU Siyang, YOU Leiyuan, LI Gang, LV Yan, SHI Weimin, LIU Taijun. Research on Load Modulation Enhancement of Quasi-Ideal Doherty Power Amplifier with Equivalent Transconductance Compensation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250789
Citation: HUA Jun, XU Gaoming, CHEN Jinghao, LU Siyang, YOU Leiyuan, LI Gang, LV Yan, SHI Weimin, LIU Taijun. Research on Load Modulation Enhancement of Quasi-Ideal Doherty Power Amplifier with Equivalent Transconductance Compensation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250789

等效跨导补偿的负载调制增强准理想Doherty射频功率放大器研究

doi: 10.11999/JEIT250789 cstr: 32379.14.JEIT250789
详细信息
    作者简介:

    华均:男,博士生,研究方向为射频集成电路与系统

    许高明:男,教授,研究方向为无线通信

    陈景豪:男,博士生,研究方向为功率放大器非线性建模

    陆思炀:男,硕士生,研究方向为射频功率放大器

    尤蕾渊:男,硕士生,研究方向为射频功率放大器

    吕言:男,博士生,研究方向为射频集成电路与系统

    李刚:男,硕士生,研究方向为射频系统自动化测试与设计

    史卫民:男,副教授,研究方向为射频集成电路与系统

    刘太君:男,教授,研究方向为无线通信

    通讯作者:

    许高明 xugaoming@nbu.edu.cn

  • 中图分类号: XXXX

Research on Load Modulation Enhancement of Quasi-Ideal Doherty Power Amplifier with Equivalent Transconductance Compensation

  • 摘要: 现代无线通信系统对射频功率放大器在高动态范围的性能提出了严苛要求。Doherty功率放大器(Doherty Power Amplifier, DPA)虽然通过主功放与辅功放的动态负载调制显著提升了回退功率下的工作效率,但其工作在C类偏置下的辅助功放因导通特性不足,导致输出电流受限,从而引发负载调制偏差,进而制约其性能表现。本文针对辅功放电流输出能力受限的问题,提出了等效跨导补偿的概念,通过引入补偿支路,精准矫正了C类偏压下辅功放较弱的输出电流,从而实现准理想的动态有源负载调制过程。为了验证所提出方法的有效性,本文使用商用GaN HEMT器件CG2H40010F在1.3–1.8 GHz频段内设计并加工了一款负载调制增强的高效率DPA,并给出了可参考的设计过程。实验结果表明:在饱和状态下,放大器输出功率达43.7–44.5 dBm,漏极效率(drain efficiency, DE)超过69.1%;6 dB回退工作状态下,DE仍保持在62.9%–69.4%,增益为9.7–10.5 dB;9 dB回退下,DE高达49.5%–57%,增益为10.3–11.5 dB。本文提出的等效跨导补偿理论通过补偿电流注入机制有效解决了传统DPA的负载调制瓶颈,为高效率的宽带DPA设计提供了新思路。
  • 图  1  (a) 传统 DPA 等效结构 (b)提出的等效跨导矫正的 DPA 结构

    图  2  理想和实际情况下主功放和辅功放的 (a) 电流 以及相应 的 (b) 负载变化对比

    图  3  不同情况下输出电流的随输出功率的变化图

    图  4  :采用 CGH40025F 设计辅功放的输出电流随输入功率变化

    图  5  主功放电流源面处饱和以及功率回退情况下的阻抗

    图  6  电路设计具体参数

    图  7  设计加工的 DPA 的照片

    图  8  测试的 DPA 的漏极效率和增益与输出功率的关系

    图  9  测试的 DPA 的漏极效率和增益与频率的关系

    图  10  实验室的线性化验证平台

    图  11  1.5 GHz下宽带信号的测试和线性化验证结果

    表  1  同近几年发表的DPA 的性能对比

    文献 频率
    (GHz)
    饱和输
    出(dBm)
    饱和
    DE(%)
    回退
    DE(%)
    [14] 1.6–2.7 43.8–45.2 56–75.3 46.5–62.5
    [6] 1.5–2.55 42.6–44.4 50.7–69.7 43.43–57
    [15] 3.1–3.6 41.8–42.8 49.6–53.4 35.4–41.1
    [16] 0.7–1.1 42.6–43.3 66–74.6 57.0–61.5
    本文 1.3–1.8 43.7–44.5 68.8–71.9 62.9–69.4
    下载: 导出CSV
  • [1] DOHERTY W H. A new high efficiency power amplifier for modulated waves[J]. Proceedings of the IRE, 1936, 24(9): 1163–1182. doi: 10.1109/JRPROC.1936.228468.
    [2] CRIPPS S C, TASKER P J, CLARKE A L, et al. On the continuity of high efficiency modes in linear RF power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(10): 665–667. doi: 10.1109/LMWC.2009.2029754.
    [3] CHEN Kenle and PEROULIS D. Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F−1/F mode transferring[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 4107–4116. doi: 10.1109/TMTT.2012.2221142.
    [4] TANG Yixi, FENG Wenjie, ZHOU Xinyu, et al. Broadband high-efficiency dual-mode Doherty power amplifier using hybrid F/F–1 continuous-mode technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(7): 2651–2664. doi: 10.1109/TCSI.2023.3263478.
    [5] SHI Weimin, SHI Wen, PENG Jun, et al. Design and analysis of continuous-mode Doherty power amplifier with second harmonic control[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2247–2251. doi: 10.1109/TCSII.2021.3051734.
    [6] XIE Jieen, CHENG K K M, FANG Xiaohu, et al. Extension of output backoff range in three-stage load modulated balanced amplifier using asymmetric coupling and non-Z0 load[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(1): 553–567. doi: 10.1109/TMTT.2024.3425168.
    [7] XIAO Zehua, YOU Fei, SHEN Ce, et al. A Doherty power amplifier based on AM-AM/PM cancellation combining network synthesized by back-off complex load impedance[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(9): 1333–1336. doi: 10.1109/LMWT.2023.3292571.
    [8] HUA Jun, XU Gaoming, CHEN Jinghao, et al. Bandwidth-expanded high-linearity Doherty power amplifier with improved AM–AM and AM–PM characteristics[J]. IEEE Transactions on Microwave Theory and Techniques, 2025. doi: 10.1109/TMTT.2025.3609778. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [9] NAM J and KIM B. The Doherty power amplifier with on-chip dynamic bias control circuit for handset application[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(4): 633–642. doi: 10.1109/TMTT.2007.892800.
    [10] LIU Ruijia, ZHU Xiaowei, XIA Jing, et al. A 24-28-GHz GaN MMIC synchronous Doherty power amplifier with enhanced load modulation for 5G mm-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(8): 3910–3922. doi: 10.1109/TMTT.2022.3176818.
    [11] 华均, 许高明, 陆思炀, 等. 负载调制增强型高效连续类Doherty射频功放研究[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20250715.1137.002, 2025.

    HUA Jun, XU Gaoming, LU Siyang, et al. Design of enhanced load modulation efficient continuous class Doherty power amplifier[J/OL]. https://link.cnki.net/urlid/32.1493.TN.20250715.1137.002, 2025.
    [12] LV Guansheng, CHEN Wenhua, ZHANG Yu, et al. A highly linear GaN MMIC Doherty power amplifier based on phase mismatch induced AM–PM compensation[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1334–1348. doi: 10.1109/TMTT.2021.3131199.
    [13] CHEN Jinghao, XU Gaoming, ZHAO Wenhua, et al. Sparse memory taps-injected neural network for digital predistortion of RF power amplifiers[J]. IEEE Microwave and Wireless Technology Letters, 2025, 35(10): 1450–1453. doi: 10.1109/LMWT.2025.3589798.
    [14] SHI Weimin, HE Songbai, ZHU Xiaoyu, et al. Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1034–1046. doi: 10.1109/TMTT.2017.2749224.
    [15] SHEN Ce, HE Songbai, YAO Tingting, et al. A high-gain Doherty power amplifier with harmonic tuning[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 320–323. doi: 10.1109/LMWC.2021.3129179.
    [16] REN Meng, GAO Ruibin, LIU Shuang, et al. Design of wideband Doherty power amplifier using inverse continuous class-F mode[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(9): 4176–4180. doi: 10.1109/TCSII.2024.3379992.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-12
  • 录用日期:  2025-12-12
  • 网络出版日期:  2025-12-19

目录

    /

    返回文章
    返回