高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多尺度时空相关注意力与状态空间建模的降水临近预报方法

郑辉 陈富 何舒平 邱学兴 朱红芳 王少华

郑辉, 陈富, 何舒平, 邱学兴, 朱红芳, 王少华. 一种多尺度时空相关注意力与状态空间建模的降水临近预报方法[J]. 电子与信息学报. doi: 10.11999/JEIT250786
引用本文: 郑辉, 陈富, 何舒平, 邱学兴, 朱红芳, 王少华. 一种多尺度时空相关注意力与状态空间建模的降水临近预报方法[J]. 电子与信息学报. doi: 10.11999/JEIT250786
ZHENG Hui, CHEN Fu, HE Shuping, QIU Xuexing, ZHU Hongfang, WANG Shaohua. A Multi-scale Spatiotemporal Correlation Attention and State Space Modeling-based Approach for Precipitation Nowcasting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250786
Citation: ZHENG Hui, CHEN Fu, HE Shuping, QIU Xuexing, ZHU Hongfang, WANG Shaohua. A Multi-scale Spatiotemporal Correlation Attention and State Space Modeling-based Approach for Precipitation Nowcasting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250786

一种多尺度时空相关注意力与状态空间建模的降水临近预报方法

doi: 10.11999/JEIT250786 cstr: 32379.14.JEIT250786
基金项目: 国家自然科学基金项目(62476260, 62473003, 42471495),国家重点研发计划课题(2023YFF0805904),安徽省科技创新攻坚计划项目(202423l10050058)
详细信息
    作者简介:

    郑辉:男,安徽大学讲师,研究方向为时空表示学习、人工智能大模型

    陈富:男,安徽大学在读硕士研究生,研究方向为人工智能大模型

    何舒平:男,安徽大学副校长、教授,研究方向为新一代人工智能大模型、复杂动态系统控制与检测

    邱学兴:男,安徽省气象台台长,研究员,研究方向为天气预报服务

    朱红芳:女,安徽省气象台首席科学家,研究员,研究方向为天气预报

    王少华:男,中国科学院空天信息创新研究院研究员、遥感与数字地球全国重点实验室副主任,研究方向为遥感大数据挖掘

    通讯作者:

    何舒平 shuping.he@ahu.edu.cn

  • 中图分类号: TP391.4; P456.1

A Multi-scale Spatiotemporal Correlation Attention and State Space Modeling-based Approach for Precipitation Nowcasting

Funds: National Natural Science Foundation of China (62476260, 62473003, 42471495), National Key Research and Development Program Project (2023YFF0805904), Science and Technology Innovation Plan Project of Anhui Province (202423l10050058)
  • 摘要: 降水临近预报,作为气象预测领域最具代表性的任务之一,通过利用雷达回波或降水序列来预测未来0-2小时的降水情况。当前的主流方法普遍存在局部细节丢失、条件信息挖掘不充分、对复杂地区适配性不足等问题。因此,该文提出了一种基于扩散网络模型的PredUMamba模型。在该模型中,一方面,引入了一种基于自适应蛇形扫描机制的Mamba块,不仅充分挖掘到关键的局部细节信息,且有效降低了计算复杂度;另一方面,设计了一种多尺度时空相关注意力模型,在增强时空层次化特征交互能力的同时实现了条件信息的全面表示。更重要地,构建了一个针对复杂地区降水临近预报任务的雷达回波数据集,即皖南山区雷达数据集,以验证模型对复杂地区突发性极端强降水的精准预报能力。此外,在领域内一些公开数据集上进一步开展了对比实验。实验结果表明,PredUMamba模型在上海雷达数据集和皖南山区雷达数据集上取得了最好的结果。同时,在SEVIR数据集上也取得了非常有竞争力的结果。
  • 图  1  PredUMamba模型整体框架图,主要包括编码器模块和解码器模块

    图  2  STCM模块结构组成图。主要包括STCA和CA两个模块

    图  3  皖南山区雷达数据集可视化图(4帧)

    图  4  PredUMamba与其他方法的可视化对比结果图。其中,Context为历史信息,Target为预测真值,ConvLSTM、Earthformer为确定性模型,VideoGPT、LDM、Prediff为概率性模型。

    表  2  PredUMamba和其他方法在皖南山区雷达数据集上对比实验结果

    模型 参数(M) FVD POD CSI CSI-pool4 CSI-pool16
    ConvLSTM[22] 14.0 / 0.369 0.288 0.320 0.369
    PredRNN[29] 46.6 / 0.420 0.302 0.333 0.373
    Earthformer[16] 15.1 780.1 0.414 0.311 0.345 0.381
    VideoGPT[30] 99.6 446.2 0.398 0.278 0.330 0.440
    LDM[12] 438.6 407.3 0.426 0.306 0.343 0.446
    Prediff[8] 220.5 246.0 0.438 0.321 0.368 0.498
    PredUMamba 180.0 236.6 0.456 0.327 0.384 0.517
    下载: 导出CSV

    表  1  PredUMamba和其他方法在SEVIR数据集上对比实验结果

    模型参数(M)FVDCRPSCSICSI-pool4CSI-pool16
    ConvLSTM [22]14.0659.70.0330.4000.4450.513
    PredRNN [29]46.6663.50.0300.4070.4490.503
    Earthformer [16]15.1690.70.0300.4100.4560.500
    VideoGPT [30]99.6261.60.0380.3650.4340.579
    LDM [12]438.6133.00.0280.3580.4020.552
    Prediff [8]220.5120.00.0240.4020.4620.624
    PredUMamba180.085.70.0250.4080.4800.646
    下载: 导出CSV

    表  3  PredUMamba和其他方法在上海雷达数据集上对比实验结果

    模型 参数(M) FVD POD CSI CSI-pool4 CSI-pool16
    ConvLSTM[22] 14.0 / 0.277 0.187 0.214 0.243
    PredRNN[29] 46.6 / 0.280 0.201 0.221 0.248
    Earthformer[16] 15.1 663.1 0.298 0.213 0.236 0.259
    VideoGPT[30] 99.6 488.6 0.266 0.181 0.215 0.287
    LDM [12] 438.6 349.2 0.243 0.169 0.201 0.280
    Prediff[8] 220.5 185.7 0.304 0.211 0.243 0.327
    PredUMamba 180.0 129.3 0.313 0.228 0.268 0.361
    下载: 导出CSV

    表  4  PredUMamba不同模块在SEVIR数据集上的消融实验

    Mamba模块STCA参数(M)FVDCRPSCSICSI-pool4CSI-pool16
    ViMAZM
    ×××438.6133.00.0280.3580.4020.552
    ××168.1103.00.0260.3810.4510.621
    ××172.0116.00.0260.4010.4620.628
    ××450.5114.20.0270.3610.4230.581
    ×177.094.80.0260.3890.4670.616
    ×180.085.00.0250.4080.4800.646
    下载: 导出CSV
  • [1] 李海, 冯开泓, 杨文恒, 等. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.

    LI Hai, FENG Kaihong, YANG Wenheng, et al. Study on simulation method of precipitation particle echo of airborne dual-polarization weather radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
    [2] 周康辉, 郑永光, 杨波, 等. 强对流天气客观临近预报技术进展和展望[J]. 气象学报, 2025, 83(3): 798–812. doi: 10.11676/qxxb2025.20240106.

    ZHOU Kanghui, ZHENG Yongguang, YANG Bo, et al. Objective nowcasting of severe convective weather: Technological progress and outlook[J]. Acta Meteorologica Sinica, 2025, 83(3): 798–812. doi: 10.11676/qxxb2025.20240106.
    [3] 朱平, 李生辰, 王振会, 等. 青藏高原东部暴雨云团局地强降水响应特征[J]. 遥感学报, 2014, 18(2): 405–431. doi: 10.11834/jrs.20143069.

    ZHU Ping, LI Shengchen, WANG Zhenhui, et al. Characteristics of rainstorm cloud clusters to local heavy precipitation over the eastern Qinghai-Tibet Plateau[J]. Journal of Remote Sensing, 2014, 18(2): 405–431. doi: 10.11834/jrs.20143069.
    [4] 刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253.

    LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253.
    [5] BAILEY L P, CLARE M A, HUNT J E, et al. Highly variable deep-sea currents over tidal and seasonal timescales[J]. Nature Geoscience, 2024, 17(8): 787–794. doi: 10.1038/s41561-024-01494-2.
    [6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montréal, Canda, 2014: 2672–2680.
    [7] VAN DEN OORD A, KALCHBRENNER N, VINVALS O, et al. Conditional image generation with PixelCNN decoders[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4797–4805.
    [8] GAO Zhihan, SHI Xingjian, HAN Boran, et al. PreDiff: Precipitation nowcasting with latent diffusion models[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3439.
    [9] GONG Junchao, BAI Lei, YE Peng, et al. CasCast: Skillful high-resolution precipitation nowcasting via cascaded modelling[C]. Proceedings of the 41st International Conference on Machine Learning, 2024: 633. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
    [10] LING Xudong, LI Chaorong, QIN Fengqing, et al. RNDiff: Rainfall nowcasting with condition diffusion model[J]. Pattern Recognition, 2025, 160: 111193. doi: 10.1016/j.patcog.2024.111193.
    [11] 李云, 杨松林, 邢智童, 等. 多尺度特征注意力网络下的卫星信号识别研究[J]. 电子与信息学报, 2025, 47(6): 1792–1802. doi: 10.11999/JEIT250126.

    LI Yun, YANG Songlin, XING Zhitong, et al. Study on satellite signal recognition with multi-scale feature attention network[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1792–1802. doi: 10.11999/JEIT250126.
    [12] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA 2022: 10684–10695. doi: 10.1109/CVPR52688.2022.01042.
    [13] CHEN Lei, CAO Yuan, MA Leiming, et al. A deep learning-based methodology for precipitation nowcasting with radar[J]. Earth and Space Science, 2020, 7(2): e2019EA000812. doi: 10.1029/2019EA000812.
    [14] VEILLETTE M S, SAMSI S, and MATTIOLI C J. SEVIR: A storm event imagery dataset for deep learning applications in radar and satellite meteorology[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1846.
    [15] PALMER T N, SHUTTS G J, HAGEDORN R, et al. Representing model uncertainty in weather and climate prediction[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 163–193. doi: 10.1146/annurev.earth.33.092203.122552.
    [16] GAO Zhihan, SHI Xingjian, WANG Hao, et al. Earthformer: Exploring space-time transformers for earth system forecasting[C]. Proceedings of the 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 25390–25403.
    [17] TANG Yujin, QI Lu, XIE Fei, et al. Video prediction transformers without recurrence or convolution[EB/OL]. https://arxiv.org/abs/2410.04733, 2024.
    [18] ZHANG Yuchen, LONG Mingsheng, CHEN Kaiyuan, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970): 526–532. doi: 10.1038/s41586-023-06184-4.
    [19] LEINONEN J, HAMANN U, NERINI D, et al. Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification[EB/OL]. https://arxiv.org/abs/2304.12891, 2023.
    [20] GAO Zhangyang, TAN Cheng, WU Lirong, et al. SimVP: Simpler yet better video prediction[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 3170–3180. doi: 10.1109/CVPR52688.2022.00317.
    [21] SHI Xingjian, GAO Zhihan, LAUSEN L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model[C]. Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
    [22] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    [23] ZHU Lianghui, LIAO Bencheng, ZHANG Qian, et al. Vision mamba: Efficient visual representation learning with bidirectional state space model[C]. Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria, 2024: 2584.
    [24] CHEN Hongruixuan, SONG Jian, HAN Chengxi, et al. ChangeMamba: Remote sensing change detection with spatiotemporal state space model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4409720. doi: 10.1109/TGRS.2024.3417253.
    [25] XU Xiongxiao, CHEN Canyu, LIANG Yueqing, et al. SST: Multi-scale hybrid mamba-transformer experts for time series forecasting[C]. Proceedings of the 34th ACM International Conference on Information and Knowledge Management, Seoul Republic of Korea, 2024: 3655–3665.
    [26] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [27] LARVOR G and BERTHOMIER L. MeteoNet: An open reference weather dataset for AI by Météo-France[C]. Proceedings of the 101st Annual AMS Meeting 2021, 2021. (查阅网上资料, 未找到对应的出版信息, 请确认).
    [28] LOSHCHILOV I and HUTTER F. Fixing weight decay regularization in Adam[EB/OL]. https://arxiv.org/abs/1711.05101, 2017.
    [29] WANG Yunbo, WU Haixu, ZHANG Jianjin, et al. PredRNN: A recurrent neural network for spatiotemporal predictive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208–2225. doi: 10.1109/TPAMI.2022.3165153.
    [30] YAN W, ZHANG Yunzhi, ABBEEL P, et al. VideoGPT: Video generation using VQ-VAE and transformers[EB/OL]. https://arxiv.org/abs/2104.10157, 2021.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  33
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-22
  • 录用日期:  2025-12-22
  • 网络出版日期:  2026-01-03

目录

    /

    返回文章
    返回